Special Topic: Carbon Nanotubes

Purple membrane resists cell adhesion
Renormalization group approach
Climatic changes in the Twenty-four Solar Terms
Twenty years ago, Iijima reported the observation of tubular carbon nanostructures using high-resolution transmission electron microscopy (HR-TEM). This report sparked tremendous interest around the world and was the catalyst that launched an intensive study on carbon nanotubes (CNTs). A CNT can be considered a seamless cylinder formed by rolling up graphene sheet(s). CNTs stand out from other materials for their extraordinary properties including high tensile strength, current carrying capacity, heat transmission, carrier mobility, and especially their tunable band gap, which are obtained from its unique structure. These superior properties endow CNTs with great potential in various applications. This special topic on CNTs is published to celebrate the twentieth anniversary of CNT research. This special topic contains eight review articles submitted by Chinese scientists discussing the preparation, properties, and applications of CNTs. These articles provide a small snapshot of the significant progress made by Chinese scientists in CNT research. To learn more about this amazing material, we invite you to read these interesting articles which detail the remarkable achievements made to date in the field of CNT research and provide some insight into the future of this material (see the special topic: Carbon Nanotubes).
SPECIAL TOPIC: Carbon Nanotubes

Guest Editor: LI Yan

REVIEWS

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>135</td>
<td>High-performance doping-free carbon-nanotube-based CMOS devices and integrated circuits</td>
<td>ZHANG ZhiYong, WANG Sheng & PENG LianMao</td>
</tr>
<tr>
<td>149</td>
<td>Doping-free carbon nanotube optoelectronic devices</td>
<td>WANG Sheng, ZHANG ZhiYong & PENG LianMao</td>
</tr>
<tr>
<td>157</td>
<td>A review of the large-scale production of carbon nanotubes: The practice of nanoscale process engineering</td>
<td>HUANG JiaQi, ZHANG Qiang, ZHAO MengQiang & WEI Fei</td>
</tr>
<tr>
<td>167</td>
<td>Carbon nanotubes in biology and medicine: An overview</td>
<td>WANG XiaoJing & LIU Zhuang</td>
</tr>
<tr>
<td>181</td>
<td>Recent progresses on the new condensed forms of single-walled carbon nanotubes and energy-harvesting devices</td>
<td>CHEN MinJiang, YU Fang, HU LiJun & SUN LianFeng</td>
</tr>
<tr>
<td>187</td>
<td>Carbon nanotubes prepared by anodic aluminum oxide template method</td>
<td>HOU PengXiang, LIU Chang, SHI Chao & CHENG HuiMing</td>
</tr>
<tr>
<td>205</td>
<td>Freestanding single-walled carbon nanotube bundle networks: Fabrication, properties and composites</td>
<td>ZHOU WeiYi, MA WenJun, NIU ZhiQiang, SONG Li & XIE SiShen</td>
</tr>
<tr>
<td>225</td>
<td>Direct growth of single-walled carbon nanotubes on substrates</td>
<td>PENG Fei, LIU Yu, CUI RongLi, GAO DongLiang, YANG Feng & LI Yan</td>
</tr>
</tbody>
</table>

Progress of Projects Supported by NSFC

LETTER

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>234</td>
<td>Purple membrane resists cell adhesion</td>
<td>ZHAO YingChun & DING JianDong</td>
</tr>
</tbody>
</table>

REVIEW

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>238</td>
<td>Synthesis, properties, and optical applications of noble metal nanoparticle-biomolecule conjugates</td>
<td>ZHANG YuJuan, HUANG Rao, ZHU XianFang, WANG LianZhou & WU ChenXu</td>
</tr>
</tbody>
</table>

ARTICLES

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>247</td>
<td>A renormalization group approach to crowd psychology and inter-group coupling in social many-body systems</td>
<td>KIM Chul Koo, LEE Kong-Ju-Bock & CHUNG Myung-Hoon</td>
</tr>
<tr>
<td>253</td>
<td>An important military city of the Early Western Zhou Dynasty: Archaeobotanical evidence from the Chenzhuang site, Gaoping, Shandong Province</td>
<td>JIN GuiYun, ZHENG TongXiu, LIU ChangJiang, WANG ChuanMing & GAO MingKui</td>
</tr>
</tbody>
</table>
CONTENTS

261 A mammalian fossil from the Dingqing Formation in the Lunpola Basin, northern Tibet, and its relevance to age and paleo-altimetry
DENG Tao, WANG ShiQi, XIE GuangPu, LI Qiang, HOU SuKuan & SUN BoYang

Geography

270 Characteristics of surface runoff in a sandy area in southern Mu Us sandy land
WU YongSheng, HASI Eerdun, Wugetemole & WU Xia

Atmospheric Science

276 Climatic changes in the Twenty-four Solar Terms during 1960–2008
QIAN Cheng, YAN ZhongWei & FU CongBin

Electronics

287 High-precision, fast geolocation method for spaceborne synthetic aperture radar
WANG QingSong, HUANG HaiFeng, DONG Zhen, YU AnXi, HE Feng & LIANG DianNong

Engineering Thermophysics

294 An atomic level study on the out-of-plane thermal conductivity of polycrystalline argon nanofilm
JU ShengHong & LIANG XinGang

299 Application of entransy theory in the heat transfer optimization of flat-plate solar collectors
LI QinYi & CHEN Qun
Purple membrane resists cell adhesion

ZHAO YingChun & DING JianDong*

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China

Received August 4, 2011; accepted October 13, 2011

Bacteriorhodopsin is a well-known photosensitive protein in the cell membrane of Halobacterium salinarum and exists in the patch called the purple membrane (PM). This letter reports, for the first time, its new function as a natural non-fouling substance for resisting cell adhesion. Mammalian cells such as murine preosteocytes MC3T3-E1 were seeded on the PM film. A significant resistance to cell adhesion on the film was found.

Non-fouling materials that resist cell adhesion are very important in fundamental research of cell-biomaterial interactions and some material applications and have thus been extensively investigated during the last decade [1–5]. Natural biomacromolecules, such as bovine serum albumin (BSA), have also conventionally been used to block cell adhesion [6,7]. This study reveals that the purple membrane (PM) of a natural photosensitive protein, bacteriorhodopsin (BR), can serve as a new basic substance that resists adhesion of mammalian cells.

BR is a retinal-containing bacterial protein existing in the membrane patch called the PM [8], which is the simplest biological system for energy conversion. Excitation of BR with a photon causes a photocycle, resulting in uptake of a proton from the cytoplasmic side of the PM and release of another proton to the extracellular side. BR and relevant retinal proteins have attracted much attention as potential optical materials in 2-D or 3-D storage, holographic storage, optical filtering, light switching, neural networks, super-fast photo detection, motion detection and artificial retinas, etc [9–12] and also as model proteins in fundamental research [13–18].

To our knowledge, the PM has not been previously recognized as a non-fouling material for preventing cell adhesion. Adhesion is the first cellular event that occurs when a cell comes into contact with a material surface, which influences subsequent cellular events such as proliferation and differentiation. Besides the studies of cell-material interactions for generating patterned surfaces of adhesion contrast, non-fouling surfaces are also useful for controlling cellular and bacterial adhesion in medical applications or under a bio-related complex environment. To date, a number of non-fouling substances have been reported, including poly(ethylene glycol) (PEG) or oligo(ethylene glycol) (OEG) [19–21] and PEG hydrogels [22–24], poly(N-isopropyl acrylamide) or its copolymers [25], and a globular protein, BSA [7]. This study affords a new choice of non-fouling substance, because, for the first time, the PM containing the membrane protein BR was found to resist cell adhesion.

PMs were purified from the Halobacterium salinarum strain \(R_{s}M_{s} \) according to the standard procedure [26]. BSA was from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). Triethylene glycol mono-m-mercaptoacetyl ether, an OEG agent was from Sigma Aldrich (St. Louis, MO, USA). Conventional glass slides for biological labs obtained from Shanghai Jinglun Industry Glass Corporation (Shanghai, China) were used as the basic substrate. \(H_{2}SO_{4} \) and \(H_{2}O_{2} \) from Shanghai Heqi Co., Ltd (Shanghai, China) and ultrapure water produced in a Millipore apparatus (Academic A10 Milli-Q) were used to clean the glass slides.
preparation of BR-coated homogeneous surfaces, glass slides were first sprayed by gold. A PM suspension with a concentration of 10 mg/mL was then dropped onto the Au-coated glass and a film was formed after drying. The virgin Au-coated surface promoted cell adhesion and served as a negative control for non-fouling surfaces. In the two positive control groups, a BSA aqueous solution, also with concentration of 10 mg/mL, was dropped and dried on a piece of glass, resulting in a dense protein film, or thiolate-terminated OEGs were linked to gold by covalent bonds to form a self assembled monolayer.

Mammalian cells MC3T3-E1 were used to evaluate the fouling resistance effect of PM. Murine preosteoblasts MC3T3-E1 cells were seeded on the surfaces at a density 15000 cell/cm². Cells were cultured in modified Eagle’s medium-α (MEM-α, Gibco) with 10% fetal bovine serum (FBS, Biochrome) in a humidified incubator at 37°C with a 5% CO₂ atmosphere. After 8-h cell culture, unattached cells were removed by PBS rinsing. The remaining cells were fluorescently stained by the Live/Dead Viability/Cytotoxicity Kit from Invitrogen Co., Ltd. Images of cells were taken in an inverted microscope (Zeiss Axiovert 200).

Compared with the Au-coated glass, the PM films significantly resisted cell adhesion of MC3T3-E1, as shown in Figure 1(a). Color images are shown in Figure S1. The Live/Dead staining led to green fluorescence of live cells and red fluorescence of dead cells. Most of cells were green in our experiments and it was rare to observe red cells. Thus, in addition to confirming the non-fouling property of PM, our cell experiments also indicate that PM is non-cytotoxic. The significant resistance of PM films to cell adhesion was further confirmed in the cases of murine fibroblasts NIH3T3 cells and rat mesenchymal stem cells (rMSC) (data not shown).

We also determined the statistics of density and spreading area of adherent MC3T3-E1 cells, with the results shown in Figure 1(b) and (c). All data were from analysis of low-magnification fluorescent micrographs via the ImageJ software package. Herein, the number of cells per unit area on the substrate indicates cell density, while cell spreading was quantified by the projected area of each cell on the substrate. A significant difference in cell density was found between the PM group and the other three groups. Cell spreading area exhibited a similar trend.

Further examination of the long-term resistance efficacy was carried out. The PM suspensions were dropped onto the Au-coated glass slide. PM films were formed in the center of a piece of Au-coated glass, and a tapered thin boundary of the BR film with center thickness 2 μm was observed, as shown in Figure S2. Thus, an adhesion contrast was generated. Then, we seeded MC3T3-E1 cells on the heterogeneous surface. The cells gradually proliferated and fully covered the Au-coated area, as shown in Figure 2. Unattached cells were removed by PBS rinsing every day and the remaining cells were observed in an optical microscope. The PM film prevented intrusion of dense cells up to 14 d, exhibiting a very persistent non-fouling capability. The purple color was retained in the center region, as shown in Figure S3. Thus, the PM films were stable under cell culture and were not easily washed out while exchanging the culture medium.

As is known, even OEG as the “gold standard” of a non-fouling substance maintains its resistance to cell adhesion after 7 d with difficulty, especially when the surrounding

Figure 1 (a) Fluorescent micrographs of murine preosteocytes MC3T3-E1 on the glass surfaces modified with Au, BSA, PM, or OEG. The four surfaces in (a) are presented schematically in Scheme S1. The observations were made after 8-h culture. Statistical quantification of the density of attached cells and spreading area per attached cell is shown in (b) and (c). n = 3; the P values of Student t-tests for (b) and (c) are listed in Tables S1 and S2, respectively. The asterisks in (b) and (c) indicate significant differences compared with the negative control (the “Au” group): **, P < 0.01; ***, P < 0.005. The corresponding colored images of (a) are shown in Figure S1.
cells have a high density [27]. In contrast to PEG and BSA etc, the PM films here remained photoresponsive (data not shown). It is well known that BR is very stable and is difficult to denature compared with most proteins [9,10]. Therefore, the finding of this study is non-trivial, considering both the strong anti-adhesion and photoresponsive property of PM.

PMs consist of lipids and BR at a molar ratio of about 10:1 and a weight ratio of about 25:75 [10], where lipids closely surround BR, as presented in Scheme S2. The protein trimers are arranged hexagonally in PM, and both cytoplasmic and extracellular sides of PM are negatively charged at neutral pH [28]. It has been known that lipids and negatively charged surfaces usually do not favor cell adhesion [29]. Therefore, the strong resistance by PM to cell adhesion may be mainly related to the negative surfaces and minor lipids. The actual mechanism remains an open question.

In summary, this letter reveals that the natural PM has a significant resistance to cell adhesion. The non-fouling property is very beneficial for potential applications of BR materials, for instance, as biosensors under complex environments. Our finding also affords an excellent model substance that resists cell adhesion, which could be useful in surface modification of biomaterials for regenerative medicine. The mechanism of prevention of non-specific protein absorption by PM is another open question. BR distinguishes itself from all of the currently known anti-fouling substances through its photoresponsive ability. It is worth noting that many retinal proteins, such as rhodopsin, halorhodopsin, xanthorhodopsin and archaerhodopsin [15,30], are light-driven ion pumps. Therefore, a direct extension of this work would be to examine possible non-fouling properties of the retinal proteins beyond BR. Resistance to other mammalian and non-mammalian cell types remain to be checked. Hence, the present report paves the way for further investigations and new applications of BR and possible other light-sensitive proteins.

This work was supported by the National Basic Research Program of China (2009CB930000, 2011CB606203) and the National Natural Science Foundation of China (21034002).

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Figure 2 Optical micrographs of MC3T3-E1 cells on heterogeneous surfaces with a centered PM film on the Au-coated glass background. Cells were seeded on the whole surfaces. Images were captured after the indicated times. The corresponding colored images are shown in Figure S3.
Supporting Information

Scheme S1 The glass slides with the exterior surface modified by Au, BSA, PM or OEG. The cells were then seeded to examine cell adhesion on the surfaces. Au promotes cell adhesion and this group is a negative control of the non-fouling surface, while BSA and OEG resist cell adhesion and these two groups serve as positive controls.

Scheme S2 PMs consist of lipids and BR molecules at a molar ratio of about 10:1 in an array of hexagonal lattice. Both cytoplasmic and extracellular sides of PM are negatively charged at neutral pH. Negative charged residues in BR on both sides are indicated with red dash “–“.

Table S1 The P values of t test of the data in Figure 1(b) for cell density.

Table S2 The P values of t test of the data in Figure 1(c) for projected area of adherent cells.

Figure S1 The colored fluorescent micrographs of murine preosteocytes MC3T3-E1 on the glass surfaces modified with Au, BSA, PM, or OEG.

Figure S2 A lateral view of the boundary of BR layers on glass by SEM.

Figure S3 Optical micrographs of MC3T3-E1 cells on inhomogeneous surfaces with a centered PM film on the Au-coated glass background.

The supporting information is available online at csb.scichina.com and www.springerlink.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.
Modification of surfaces and statistics of cell adhesion on those surfaces

Glass slides were used as the basic substrate and usually sprayed with a thin gold film in our study. Then, the purple membrane (PM) suspension was simply dropped and dried on the Au-coated glass. Additionally, bovine serum albumin (BSA) proteins were tightly adsorbed on the Au-coated glass, and the thiolate-terminated oligo(ethylene glycol) (OEG) molecules were linked to gold by covalent bond, as shown in the Scheme S1.

Scheme S1 The glass slides with the exterior surface modified by Au, BSA, PM or OEG. The cells were then seeded to examine cell adhesion on the surfaces. Au promotes cell adhesion and this group is a negative control of the non-fouling surface, while BSA and OEG resist cell adhesion and these two groups serve as positive controls.

All data for statistical analysis were based upon fluorescent micrographs of cells via software ImageJ. Nine viewing fields under 10× objective were treated to obtain data for one sample, and three independent parallel samples were joined in statistics (n = 3). Data sets were compared using Student t-test. The resultant p values are listed in Tables S1 and S2.

Table S1
The p values of t test of the data in Figure 1b for cell density

<table>
<thead>
<tr>
<th></th>
<th>Au</th>
<th>BSA</th>
<th>PM</th>
<th>OEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>–</td>
<td>0.0004</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>BSA</td>
<td>0.0004</td>
<td>–</td>
<td>0.0003</td>
<td>0.0002</td>
</tr>
<tr>
<td>PM</td>
<td>0.0001</td>
<td>0.0003</td>
<td>–</td>
<td>0.0235</td>
</tr>
<tr>
<td>OEG</td>
<td>0.0001</td>
<td>0.0002</td>
<td>0.0235</td>
<td>–</td>
</tr>
</tbody>
</table>

“–“: p > 0.05, no significant difference;
““*: p < 0.05, significant difference;
*“***“*: p < 0.005, very significant difference.

Table S2
The p values of t test of the data in Figure 1c for projected area of adherent cells

<table>
<thead>
<tr>
<th></th>
<th>Au</th>
<th>BSA</th>
<th>PM</th>
<th>OEG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au</td>
<td>–</td>
<td>0.0136</td>
<td>0.0001</td>
<td>0.0001</td>
</tr>
<tr>
<td>BSA</td>
<td>0.0136</td>
<td>–</td>
<td>0.1625</td>
<td>0.0445</td>
</tr>
<tr>
<td>PM</td>
<td>0.0001</td>
<td>0.1625</td>
<td>–</td>
<td>0.0269</td>
</tr>
<tr>
<td>OEG</td>
<td>0.0001</td>
<td>0.0445</td>
<td>0.0269</td>
<td>–</td>
</tr>
</tbody>
</table>

“–“: p > 0.05, no significant difference;
““*: p < 0.05, significant difference;
*“**“*: p < 0.01, significant difference;
*“***“*: p < 0.005, very significant difference.

Figure S1 The colored fluorescent micrographs of murine preosteocytes MC3T3-E1 on the glass surfaces modified with Au, BSA, PM, or OEG. The corresponding black and white images are shown in Figure 1(a) in the main manuscript.
Figure S2 A lateral view of the boundary of BR layers on glass by SEM. Glass substrate lies on the left and BR coated on the glass on the right. The BR film was formed after dropping a BR suspension to the center of the glass slide and then drying in air. A tapered thin boundary of the BR film was observed, and thus the BR region cannot prevent cell migration from the non-BR region due to a topography effect.

Figure S3 Optical micrographs of MC3T3-E1 cells on inhomogeneous surfaces with a centered PM film on the Au-coated glass background. Cells were seeded on the whole surfaces. Images were captured after the indicated days. The corresponding black and white images are shown in Figure 2 in the main manuscript.

Scheme of BR molecule and purple membrane

Scheme S2 PMs consist of lipids and BR molecules at a molar ratio of about 10:1 in an array of hexagonal lattice. Both cytoplasmic and extracellular sides of PM are negatively charged at neutral pH. Negative charged residues in BR on both sides are indicated with red dash ‘–’.