钨灯丝扫描电镜拍图最佳状态的维护与思考

周广荣
（聚合物分子工程教育部重点实验室、复旦大学高分子科学系 上海 200433）

摘 要：钨灯丝扫描电镜最佳工作状态的维护需要处理好仪器的硬件、附件和附属的工具、工作参数的调节与维护、样品处理以及保养等工作。这篇文章详细分析了这些影响因素，同时提出了一些相应的维护方法。

关键词：钨灯丝扫描电镜；最佳图像；维护与思考；方法

DOI: 10.3969/j. issn. 1001-232X. 2013. 06. 018

Maintenance and thinking on image collecting optimum working state of tungsten filament SEM. Zhou Guangrong (The Key Laboratory of Molecular Engineering of Polymer and Department of Macromolecule Science, Fudan University, Shanghai 200433, China)

Abstract: Best in tungsten filament SEM image maintenance should control the instrument hardware, accessories and ancillary tools, specification, sample handling and maintenance. The paper analyzed in detail each of these factors, while detailing maintenance of corresponding methods.

Key words: tungsten filament SEM; the best image; maintenance and thinking; method

1 仪器硬件的维护与保养

硬件的维护与保养是钨灯丝扫描电镜的主机维护与保养的核心部分，关系到仪器的寿命、使用状态效果等多重问题。图 1 保养前对图 2 保养后的图像的清晰度有明显变化的表示。对仪器的维护与保养本文主要是从三个方面进行阐述。

（1）电子枪的维护与保养

钨灯丝扫描电镜的图像拍摄好坏很大程度上取决于钨灯丝的维护与保养，而钨灯丝的正确安装以及合理的保养能有效的延长灯丝的寿命和获得更好的拍术图像质量。一般来讲钨灯丝的寿命主要取决于 4 个个因素。

（a）灯丝的发射电流。灯丝的发射电流越大灯丝的寿命会越短，一般根据图像会选择一个合理的发射电流；

（b）灯丝的饱和点。灯丝的饱和点过于大对于图像的质量没有太多的影响，然后会严重降低灯丝的使用寿命，如果不是超高分辨测试，常规使用过程中可以稍微低一点饱和点检测即可，一般能保证图像有足够的明亮又可以大大延长钨灯丝的使用寿命；

（c）使用时真空度的大小。仪器使用时确保真
空度已经到使用要求后方可点燃灯丝，否则部分空
气中的杂质会吸附在灯丝上，瞬间点燃对灯丝会
造成一定的损坏；缩短灯丝的使用寿命；
(d) 铀丝暴露在空气中的时间。铀丝常规
都是放置在干燥器中进行保存，尽量减少空气的接
触，如果在使用过程中如果样品室的门经常开关，
特别是已经用过一段时间的电镜需要等灯丝冷却
下来后再放掉真空更换样品，避免空气瞬间冲入镜
筒导致过热的灯丝与大气接触发生氧化反应。
(2) 电子枪的清洗与维护
电子枪用久了会有很多挥发物质存留在枪体
的整个部位，需要将整个组件全部拆下来采用丙酮
或者无水乙醇进行超声清洗。清洗过程中注意不要
进行二次污染，清洗干净后放置在无尘布上，带好
无尘手套重新组装所有部件。清洗完所有部件要
仔细安装好零件及安装好灯丝后，需要多抽一段时
间的真空，保持环境的干燥与清洁，目的是为了实
验数据的采集提供更好的电子束。
(3) 物镜光阑的清理与维护
本文所用 TESCAN 公司的型号为 VEGA
TS5136MM 的扫描电镜，光阑有两个光阑分别为
50μm 和 500μm，这两种光阑在使用和清洗时全部
需要轻拿轻放，且需要用干净无污染的镊子夹住边
缘，切记不要用任何工具包含镊子划伤或者划破光
阑的表面，更不要污染和损坏光阑孔。光阑的清洗
测试不同的样品，光阑的污染程度会有很大差异，对于
一些高分子及生物的样品不耐电子束的照射，很容易
产生一些分解物质，对光阑的污染相对较大，所以
定期需要对光阑进行清洗或者更换，一般 50μm 的
光阑相对比较好清洗，而 50μm 的光阑相对很难清
洗，清洗不当还会带来更大的负面影响，一般用久
污染后需要直接更换。
光阑的定期清洗和更换，主要是取决于污染程
度，一般参看实验参数的改变如象搬值改变很大，
或者 OIB 参数变化程度。在清洗和更换时切记要
保持环境的湿度和卫生，新的光阑需要放在干燥器
中，防止放置或保存不当带来污染。
(4) 真空系统的维护与保养
对于扫描电镜系统的真空部分好与坏对电
镜的寿命也有很大的影响，因此真空系统的维护与
保养变得尤为重要，真空系统中关键部位如电子枪
室“O”型圈、样品室门以及影响真空度的各个部件
的连接处等，日常维护与保养时主要需要注意样
品室及电子枪室“O”型圈等不要沾有毛绒杂质、散落
的一些样品以及灰尘等，如特殊必要可以少量点
硅树脂真空酯，如果真空度很好可以不用真空酯。
电镜系统所用的机械泵和涡轮分子泵需要进
行定期检查，一般使用大样量很大且样品的污染程
度大，三个月需要检查一次，根据使用情况每半年
或者一年需要进行彻底清洗一次。

图 1 硬件保养前三万倍图像

图 2 硬件保养后五万倍图像
2 仪器的各种附属和附属工具等的维护与保养

仪器的多种附属和附属工具等的维护与保养首先需要考虑的就是电镜室的环境，需要保持清洁、无尘，最好保持 24h 空调调控温除湿等手段，控制好室内环境因素，使室内温度在 15～25℃之间，湿度在 50%以下。各种附属件及附属工具的维护与保养也很大程度上影响最佳工作状态，本文就仪器附属件、镀金仪和承载样品的载物台的维护与保养分别进行讨论。

（1）仪器附属件

购买仪器时会根据单位的实际应用领域购置不同的附属件，对于常用的附属件需要进行定期的维护和保养。不常用的附属件如背散射电子成像系统、低真空操作系统、成分成像系统、拓扑成像系统、立体成像系统以及不常用的工作电压等功能系统也需要定期的开启，维持功能的正常化，防止电气元件老化，每次开启时间不应少于 1 小时[10]。

（2）镀金仪

本文采用的是北京中科仪股份有限公司生产的 SBC—12 离子溅射仪，使用中要注意喷镀样品室内的清洁维护，防止喷镀不同的样品室内残留不同的元素进行交叉污染，同时也要注意样品的安放位置、喷镀时间和电流的选择，选择不当可能样品直接损坏即改变样品的原貌，特别是生物样品要注意喷镀的时间和电流的选择。

另外喷镀前对于有些样品抽真空的时候发生变化或喷镀后，污染了整个喷镀室需要及时进行清理，否则后面的喷镀样品会受到严重干扰，如喷镀导电层效果不好或者样品出现了很多污染的信号，干扰了正常扫描电镜的观察。如果镀金仪污染需要用无水乙醇、丙酮进行彻底清洗，保证仪器的正常使用。

（3）载物台的保养和维护

承载样品的载物台和仪器的样品室都需要保持干净，一般来讲都不要用手直接接触，特殊原因需要接触时务必带无尘手套。仪器和样品的载物台用一段时间后，都必须进行仔细维护和清理。样品台需要用酒精或者丙酮进行超声清洗，确保无杂质或灰尘以及残留的样品污染样品室。仪器的样品室使用三个月左右要进行彻底清理落人元件之间的灰尘或者杂物，先用洗耳球吹试样品台，然后用小刷子慢慢清理里面部分为粘尘的样品的残渣，切不可用磨砂的、粗糙的或者易掉纤维等布、手指去擦拭样品室。如果样品台和样品室残留很多污染物，进入电镜室抽真空后对仪器的镜筒和光阑会有很大污染，久而久之电镜的最佳工作状态会受到很大影响。

3 仪器工作参数的日常调节与维护

扫描电镜拍图时工作参数的选择至关重要，选择合适的拍摄参数不但可以得到理想的电镜图片，还可以有效的维护仪器的硬件不受干扰，更好的延迟仪器的最佳工作状态。

拍图时所有的参数都需要仔细优化，如加速电压、扫描速度、象散数值、探针电流、wobbler 等参数，特别要注意根据不同的样品选择适当的参数，如加速电压不宜用得过高，满足要求即可，能用低电压就不用高电压，因为高的加速电压对于生物或者高分子样品而已很容易被电子束烧伤，如图 3 所示，电子束烧伤后的样品会有部分分解物出现，污染整个样品室以及光阑等部件，久而久之对后面的图像拍摄会有很大影响。很多参数不需要总是大幅度变化，一般而已更换好灯丝或者每次整机保养后仪器管理员优化好很多参数，普通的使用者不用频繁更换电子工作参数，因为频繁更改电镜工作参数也不利于电镜稳定工作。
4 样品的处理与维护

做扫描电镜时样品的制备和维护很重要，如果没有根据样品的特性合理的进行准备，则扫描电镜拍摄时是很难做出自己满意的图像。常规高真空状态下做钨灯丝扫描电镜待观察的样品首先要考虑尽量干燥、无挥发性物质，表面被污染的样品要进行适当的清洗处理。有些样品表面有污染物沉积等一定要进行适当蚀刻或者离子切割等才能露出显微结构，如图4 离子切割后的样品能明显看出样品的内部结构，而图5 的最下端没有经过离子切割的部分样品的真实原貌基本看不见。对于导电性差或者不导电的样品，在电子束作用下会产生荷电聚集，阻挡入射电子束进入样品及样品内电子射出样品表面，从而造成图像质量的下降，这类样品需要喷镀导电层进行处理，如果已经喷镀导电层的样品暂时还不拍摄电镜图片，需要放在干燥器或固定的样品盒中保存，放置样品表面被污染。

5 结束语

繁多复杂的样品进行钨灯丝扫描电镜图像拍摄时，特别是高倍率拍摄条件下需要综合考虑多种因素的干扰，否则想针对每个样品都能做出满意的图像，实际操作上还是存在很大难度。需要仔细研究改掌握仪器、附件、实验参数以及样品的制备和形态等多重因素是否处在最佳的工作状态，是否需要进行更加合理而准确的处理、维护和保养工作。在实际实验过程中，对于不同的图像结果，要灵活采用各种不同的方法进行分析，反复实验排除各种保养不前的干扰，才能拍摄出更好、更真实的图片。

参考文献


校稿日期：2013-07-05