Titania Composite Microspheres Endowed with a Size-Exclusive Effect toward the Highly Specific Revelation of Phosphopeptidome

Ying Zhang,†,‡ Wanfu Ma,§,‡ Cheng Zhang,† Changchun Wang,*§ and Haojie Lu*†

†Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
§State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 2000433, China

ABSTRACT: The efficient isolation of low-abundance phosphopeptides from complicated biological samples containing a significant quantity of nonphosphopeptides and proteins is essential for phosphopeptidome research but remains a great challenge. In this Article, magnetic composite microspheres comprising a magnetic colloidal nanocrystal cluster core and a mesoporous titania shell with an average pore diameter of 3.4 nm were modified by directly coating an amorphous titania shell onto the magnetite core, followed by converting the amorphous titania shell into a crystalline structure via a hydrothermal process at 80 °C. The as-prepared magnetic mesoporous titania microspheres possess a remarkable specific surface area that is as high as 603.5 m²/g, which is an appropriate pore size with a narrow size distribution and a high magnetic responsiveness. These outstanding features imply that the composite microspheres exhibit extraordinary performance in phosphopeptidome research, including high specificity toward phosphopeptides, an excellent size-exclusion effect against phosphoproteins, exceptional enrichment capacity, and efficient separation from mixtures. Encouraged by the experimental results, we employed this method to investigate the phosphopeptidome of snake venom for the first time. A total of 35 phosphopeptides was identified from the snake venom from the family Viperidae, accounting for 75% of the total identified peptides. This result represents the largest data set of the phosphopeptidome in snake venom from the family Viperidae.

KEYWORDS: magnetic composite microspheres, mesoporous titania, hydrothermal process, size-exclusion effect, phosphopeptidome

1. INTRODUCTION

Since MCM-41 and SBA-15 were first reported in the 1990s, mesoporous materials have been extensively investigated due to their high specific surface area, large pore volume, appropriate pore size, and wide range of applications.¹⁻¹⁰ Significant efforts have been made to synthesize novel mesoporous materials for proteomics research.¹¹⁻¹⁶ To date, numerous types of mesoporous materials, such as mesoporous silicas,¹¹,¹² mesoporous carbons,¹³ and metal organic frameworks,¹⁶ have been explored to extract peptides with low abundances from complicated biological samples. Magnetic nanocomposites have achieved great success in bioseparation because of their unique magnetic responsiveness and designed functionalities.¹⁷⁻²⁰ As an important member of this class, magnetic mesoporous composite microspheres synthesized via entrapping magnetically responsive cores in a mesoporous matrix have the ability to simultaneously achieve easy and effective isolation of the target biomolecules.²¹⁻²⁷

Compared with proteins, biologically active peptides (with molecular weights of less than 10 kDa) are sufficiently small to enter body fluid passively and produce diagnostic traces as a result of protein synthesis, processing, and degradation. Therefore, these naturally existing peptides, called peptidome, have drawn increasing attention from scientists.²⁸ Comprehensive analysis of peptidomes in complex biological mixtures can contribute to a better understanding of biological functions and the discovery of novel biomarkers with higher sensitivity and specificity.²⁹,³⁰ Phosphopeptidomes, the naturally existing phosphopeptides in biological samples and an important subset of peptidome, modulate a wide range of biological functions and protein activities.³¹ Although the development of functional materials has promoted the research of the phosphoproteome, the state-of-art techniques for enriching the phosphoproteome are not suitable for the extraction of the phosphopeptidome because there exists a fundamental difference between phosphoproteome and phosphopeptidome extraction. In conventional phosphoproteome research, all of the proteins are first digested into a mixture of non-phosphopeptides and phosphopeptides. The digestion process is employed to generate phosphopeptides for the confirmation...
of phosphorylated sites because the identification of phosphorylated sites at the protein level is significantly more difficult. Phosphopeptides are then selectively enriched from a pool containing a large set of peptides using functional materials to avoid the interference of nonphosphopeptides. Because the proteins are digested into peptides, most of the reported phosphoproteome enrichment materials, including that presented in our previous work, do not require a size-exclusion effect against proteins. In contrast, because additional phosphopeptides are generated from the digestion of the phosphoproteins, a digestion process cannot be used in phosphopeptide research. For this reason, large amounts of proteins, including phosphoproteins, exist in the test phosphopeptidome research. For this reason, large amounts of phosphoproteins, a digestion process cannot be used in phosphopeptide research. Therefore, the efficient isolation of phosphopeptides from complex samples containing high concentrations of proteins, including both nonphosphoproteins and phosphoproteins, is the most important prerequisite for successful phosphopeptide research.

Recent advances in mesoporous nanomaterials for the solid-phase extraction of peptides based on a size-exclusion mechanism have shed new light into peptidome research.5,33–38 Mesoporous nanomaterials, including MCM-41, etc., with highly ordered channels and controllable pore entrance radii, have demonstrated great promise in addressing the size-exclusion issues. To selectively capture the phosphopeptide, a Ti4+-functionalized mesoporous material was synthesized with both a size-exclusion effect and phosphopeptide-specific selectivity and was then successfully applied to phosphopeptide research.39 However, the relatively low density of the surface functional group decreased the specificity of this material toward phosphopeptides. Compared with metal ions immobilized on mesoporous silica, mesoporous metal oxide architectures combining both the characteristics of a mesoporous structure and a metal oxide surface are particularly fascinating because of their molecular cutoff effects, highly pure interface, and abundant interaction sites toward the specific retention of phosphopeptides.

In this work, we report a simple and effective method for the extraction of phosphopeptides using custom-made, magnetic, mesoporous titania composite microspheres endowed with size-exclusion effects. The unique properties of this material for phosphopeptide enrichment include (1) a highly pure and crystalline interface that is responsible for high specificity toward phosphopeptides, (2) an appropriate pore diameter (ca. 3 nm) and a narrow pore-size distribution, both of which ensure the effective exclusion of nonphosphoproteins and phosphoproteins, (3) ultra-high specific surface area (>600 m2/g) providing a high enrichment capacity for phosphopeptides, and (4) a high-magnetic-response magnetite core, which enables the convenient removal of phosphopeptides from a pool that consists predominately of other proteins and nonphosphopeptides by applying an external magnetic field after enrichment.

2. EXPERIMENTAL SECTION

2.1. Materials. Iron(III) chloride hexahydrate (FeCl\textsubscript{3}·6H\textsubscript{2}O), ammonium acetate (NH\textsubscript{4}Ac), ethylene glycol (E.G.), hydrazine hydrate, trisodium citrate dehydrate, and aqueous ammonia solution (25%) were purchased from Shanghai Chemical Reagents Company (Shanghai, China) and used as received. β-Casein, bovine serum albumin, asialofetuin, 2,5-dihydroxybenzoic acid (2,5-DHB, 98%), ammonium bicarbonate (ABC, 99.5%), and 1-1-(tosylamido)-2-phenyl-ethyl chloromethyl ketone (TPCK)-treated trypsin (E.G. 2.421.4) were purchased from Sigma (St. Louis, MO). A lyophilized powder of snake venom from the family Viperidae was obtained from Xinyuan Venom Distribution Division (Ganzhou, China). Acetone (ACN, 99.9%) and trifluoroacetic acid (TFA, 99.8%) were purchased from Merck (Darmstadt, Germany). Phosphoric acid (85%) was purchased from Shanghai Feida Chemical Reagents Ltd. (Shanghai, China). DHB matrix was dissolved in an acetonitrile (ACN)/water (50/50, v/v) solution containing 1% H\textsubscript{3}PO\textsubscript{4} and DHB was maintained at 10 mg mL-1. Deionized water (18.4 MΩ cm) was used for all experiments and was obtained from a Milli-Q system (Millipore, Bedford, MA).

2.2. Preparation of MCNCs Stabilized by Citrate. Magnetite colloidal nanocrystal clusters (MCNCs) were prepared using a modified solvothermal reaction.40 Typically, FeCl\textsubscript{3}·6H\textsubscript{2}O (1.350 g), NH\textsubscript{4}Ac (3.854 g), and sodium citrate (0.4 g) were dissolved in ethylene glycol (70 mL). The mixture was stirred vigorously for 1 h at 170 °C to form a homogeneous black solution, which was then transferred to a Teflon-lined, stainless-steel autoclave (a capacity of 100 mL). The autoclave was heated at 200 °C and stored for 16 h before cooling to room temperature. The black product was washed with ethanol and collected using a magnet. The cycle of washing and magnetic separation was repeated several times. The final product was dispersed in ethanol for further use.

2.3. Preparation of Fe\textsubscript{3}O\textsubscript{4}@Ti\textsubscript{O\textsubscript{2}} Core/Shell Microspheres. The Fe\textsubscript{3}O\textsubscript{4}@Ti\textsubscript{O\textsubscript{2}} core/shell microspheres were synthesized by directly coating a Ti\textsubscript{O\textsubscript{2}} layer on the surface of the MCNCs in a mixed solvent of ethanol and acetonitrile at room temperature by hydrolyzing TBOT in the presence of ammonia. Briefly, the as-prepared MCNCs (50 mg) were dispersed in a mixed solvent containing ethanol (75 mL) and acetonitrile (25 mL) with the aid of an ultrasonicator; the solution was then mixed with NH\textsubscript{3}·H\textsubscript{2}O (0.5 mL) at room temperature. Finally, a solution of TBOT (1 mL) in ethanol (15 mL) and acetonitrile (5 mL) was added to the above suspension under stirring. After reacting for 1.5 h, the products were collected using magnetic separation and were then washed multiple times with ethanol and acetonitrile.

2.4. Preparation of Fe\textsubscript{3}O\textsubscript{4}@mTiO\textsubscript{2} Core/Shell Microspheres. Mesoporous Ti\textsubscript{O\textsubscript{2}} shells were synthesized by treating Fe\textsubscript{3}O\textsubscript{4}@Ti\textsubscript{O\textsubscript{2}} microspheres with a hydrothermal method. Typically, the as-synthesized Fe\textsubscript{3}O\textsubscript{4}@Ti\textsubscript{O\textsubscript{2}} microspheres were dispersed in 60 mL of mixed solvent containing ethanol (40 mL) and deionized water (20 mL). The mixture was then transferred to a Teflon-lined, stainless-steel autoclave (capacity of 100 mL). The autoclave was heated at a certain temperature and maintained for 20 h. Then, the mixture was cooled to room temperature, and the resulting black product was washed with ethanol and collected using a magnet.

2.5. Preparation of Tryptic Digests of Standard Proteins. β-Casein and BSA were dissolved in ABC (25 mM) at pH 8.0 (1 mg/mL for each protein) and denatured by boiling for 10 min. The protein solutions were then incubated with trypsin at an enzyme/substrate ratio of 1:40 (w/w) for 12 h at 37 °C to produce proteolytic digests. The tryptic peptide mixtures were stored at −20 °C until further use.

2.6. Characterization. Field-emission transmission electron microscopy (FE-TEM) images were collected using a JEM-2100F transmission electron microscope at an acceleration voltage of 200 kV. The samples were dispersed at an appropriate concentration and cast onto a carbon-coated copper grid. Magnetic characterization was carried out using a vibrating sample magnetometer (VSM) on a Model 6000 physical property measurement system (Quantum, USA) at 300 K. X-ray diffraction (XRD) patterns were collected on an X′Pert Pro Panalytical, The Netherlands) diffractometer with Cu KR radiation at λ = 0.154 nm operating at 40 kV and 40 mA. Nitrogen adsorption–desorption measurements were performed on an ASAP2020 (Micromeritics, USA) accelerated surface area analyzer at 77 K. Before obtaining the measurements, the samples were degassed in a vacuum at 120 °C for at least 6 h.

2.7. Selective Enrichment of Phosphopeptides with Fe\textsubscript{3}O\textsubscript{4}@mTiO\textsubscript{2}-Casein. The obtained Fe\textsubscript{3}O\textsubscript{4}@mTiO\textsubscript{2}-Casein was washed with the following procedure.
Scheme 1. Schematic Illustration of the Synthetic Procedures for the Preparation of Modified Fe₃O₄@mTiO₂-80

ethanol three times and then suspended in deionized water (10 mg/mL). Tryptic digests of β-casein and BSA were dissolved in loading buffer (50% ACN containing 5% TFA, 100 μL), and then, Fe₃O₄@mTiO₂-80 (2 μL) was added and incubated at room temperature. Subsequently, Fe₃O₄@mTiO₂-80 with captured phosphopeptides was separated from the mixed solution by applying an external magnet. After washing with loading buffer (200 μL) to remove the nonspecifically adsorbed peptides, the trapped phosphopeptides were eluted with NH₃·H₂O (5%, 10 μL) for further MS analysis. The enrichment of phosphopeptides from protein mixtures was the same as described above, i.e., the protein mixture contained BSA (protein)/β-casein (protein)/β-casein (protein)/β-casein (protein) at 55% A, the same below) for 100 min. The column adsorption were compared by measuring the di

2.8. Enrichment of Phosphopeptidome from Snake Venom.

The enrichment procedure for the phosphopeptidome from snake venom using Fe₃O₄@mTiO₂-80 was the same as described for the enrichment of phosphopeptides from protein mixtures was the same as above, i.e., the protein mixture contained BSA (protein)/β-casein (protein)/β-casein (protein)/β-casein (protein)/β-casein (protein)/β-casein (protein)/β-casein (protein)/β-casein (protein) at a volume ratio of 2:1, which led to the formation of the desired products. When the temperature is relatively high, such as Fe₃O₄@mTiO₂-120), magnetic mesoporous titania micro-

2.11. 1D Nano-Flow Liquid Chromatography-Tandem MS (LC-MS/MS) Analysis. Phosphopeptides enriched from snake venom were analyzed using 1D nano-flow LC-MS/MS. Liquid chromatography was performed on a nano Acuity UPLC system (Waters Corporation, Milford, USA) connected to a LTQ Orbitrap XL mass spectrometer (Thermo Scientific, Bremen, Germany) equipped with an online nano-electrospray ion source (Michrom Bioresources, Auburn, USA). Peptides were resuspended in solvent A (2% acetonitrile, 0.1% formic acid in water, 25 μL). Peptide solution (20 μL) was loaded onto the Ctrap Peptide column (2 mm × 0.5 mm, Michrom Bioresources, Auburn, USA) at a flow rate of 20 μL/min (1% of solvent A for 5 min and then separated on a Magic C18AQ reverse-phase column (100 μm id × 15 cm, Michrom Bioresources, Auburn, USA) with a linear gradient, starting from 5% B (90% acetonitrile, 0.1% formic acid in water) and increasing to 45% B (that is, from 95% A to 55% A, the same below) for 100 min. The column flow rate was maintained at 500 nL/min. The electrospray voltage (1.6 kV) versus the inlet of the mass spectrometer was used. The LTQ Orbitrap XL mass spectrometer was operated in the data-dependent mode to switch automatically between MS and MS/MS acquisition. A full survey scan of the MS spectrum using one microscan (m/z 350–1800) was acquired in the Orbitrap with a mass resolution of 60,000 at m/z 400, followed by MS/MS of the eight most-intense peptide ions in the LTQ analyzer. The automatic gain control (AGC) was set to 10⁵ ions with a maximum accumulation time of 500 ms. Single charge states were rejected, and dynamic exclusion was used with two microscans with exclusion durations of 15 and 30 s. For MS/MS, precursor ions were activated using 35% normalized collision energy at the default activation, q of 0.25 and an activation time of 30 ms. The mass spectrometer was set so that one full MS scan was followed by three MS2 scans and three neutral loss MS3 scans. Phosphopeptide detection was performed by setting the mass spectrometer to acquire a full MS scan, followed by three data-dependent MS2 scans. Subsequently, an MS3 spectrum was automatically triggered when the three most intense peaks from the MS2 spectrum corresponded to a neutral loss event of 98, 49, and 32.67 ± 1 Da for the precursor ion with 1+, 2+, and 3+ charge states, respectively. The spectra were recorded using Xcalibur (version 2.0.7) software.

3. RESULTS AND DISCUSSION

3.1. Preparation and Characterization of Fe₃O₄@mTiO₂-80 with Ultra-High Specific Surface Area and Appropriate Pore Size. The protocol employed for the preparation of magnetic mesoporous titania composite microspheres endowed with a size-exclusion effect is schematically illustrated in Scheme 1. Briefly, magnetite colloidal nanocrystal clusters (MCNCs) stabilized by sodium citrate were first synthesized using a modified solvothermal reaction. A sol–gel process was then carried out to encapsulate the MCNCs in a compact and amorphous titania shell. Finally, the Fe₃O₄@mTiO₂ microspheres were subjected to a hydrothermal process at 80 °C in a mixed solvent containing ethanol and deionized water at a volume ratio of 2:1, which led to the formation of the modified Fe₃O₄@mTiO₂-80. The reaction temperature in the hydrothermal process step is critical for the synthesis of the desired products. When the temperature is relatively high, such as 160 °C (the product we have previously reported is marked as Fe₃O₄@mTiO₂-160°) or 120 °C (the product is marked as Fe₃O₄@mTiO₂-120), magnetic mesoporous titania microspheres with larger pore sizes were obtained. As observed in our previous report and Figure 1, the specific surface areas of
the resulting Fe₃O₄@mTiO₂ are 167.1 and 194.4 m²/g, while the average pore sizes are 8.6 and 7.9 nm for Fe₃O₄@mTiO₂-160 and Fe₃O₄@mTiO₂-120, respectively. These microspheres can selectively enrich phosphopeptides for phosphoproteome research. However, they cannot be applied in a phosphoproteome study because the pores are too large to exclude the phosphoproteins from the phosphopeptides. Decreasing the pore size to approximately 3 nm is highly desirable for efficiently blocking the phosphoproteins while allowing the phosphopeptides to penetrate into the pore channels.11,33 The pore size of the as-synthesized Fe₃O₄@mTiO₂ could achieve this goal only if the temperature is 80 °C. The porosity properties of Fe₃O₄@mTiO₂-80 were characterized using nitrogen adsorption–desorption measurements. As shown in Figure 1, the specific surface area of Fe₃O₄@mTiO₂-80 is as high as 603.5 m²/g, which is approximately the largest surface area reported for titanium-dioxide-based nanomaterials. Additionally, the relatively uniform pore sizes with average pore diameters of approximately 3.4 nm and a very narrow pore-size distribution fulfill the requirements of the size exclusion effect.

Encouraged by the outstanding features of Fe₃O₄@mTiO₂-80, we used transmission electron microscopy (TEM) characterization to track the entire reaction process. Representative TEM images of each step are shown in Figure 2. First, sodium citrate-stabilized MCNCs with nearly spherical morphologies and average diameters of approximately 280 nm were observed. After encapsulation with an amorphous titania shell, a well-defined core/shell structure could be clearly observed, and the thickness of the titania shell was approximately 120 nm. The TEM image (Figure 2b) and selected-area electron diffraction (SAED) pattern (Figure 2b inset) recorded from a certain area of individual microspheres revealed that the TiO₂ shell was continuous and amorphous. Upon further hydrothermal treatment at a temperature of 80 °C, the microspheres could be transformed into a magnetic Fe₃O₄ core and a TiO₂ shell, as shown in Figure 2c. The TEM image (Figure 2c) and SAED pattern (Figure 2c inset) indicated that the TiO₂ shell was continuous and amorphous. Finally, the microspheres could be transformed into a magnetic Fe₃O₄ core and a TiO₂ shell, as shown in Figure 2d. The TEM image (Figure 2d) and SAED pattern (Figure 2d inset) indicated that the TiO₂ shell was continuous and amorphous.
°C, the TiO$_2$ layer was no longer continuous but constructed from many very small nanocrystals (Figure 2c). Additionally, a high-resolution TEM (HRTEM) image (Figure 2d) and SAED pattern (Figure 2d inset) provide powerful evidence of the polycrystalline nature of the TiO$_2$ shell in the composite microspheres. The creation of the mesopores should also be attributed to the tiny slits between neighboring nanocrystals in the shell.

The crystalline structure of the composite microspheres was further investigated using powder X-ray diffraction (PXRD, Figure 3a). Prior to the hydrothermal treatment of the TiO$_2$ shells, both the MCNCs and Fe$_3$O$_4$@TiO$_2$ microspheres showed a simple PXRD pattern, which was ascribed to the typical cubic structure of Fe$_3$O$_4$ (JCPDS 19-629). The lack of a characteristic TiO$_2$ crystal peak is indicative of an amorphous TiO$_2$ shell and agrees well with the SAED result. After hydrothermal treatment at 120 °C for 20 h, several new peaks marked “A” were detected for Fe$_3$O$_4$@mTiO$_2$-120. These peaks were indexed to the typical crystallographic planes of anatase-phase TiO$_2$. The XRD pattern for Fe$_3$O$_4$@mTiO$_2$-80 is significantly different from Fe$_3$O$_4$@mTiO$_2$-120. As observed in Figure 3a, only a weaker peak of TiO$_2$ was observed at the 2θ value of 25.1°, corresponding to reflections of the (101) crystalline plane. By combining the results of SAED and PXRD, the nanocrystals in the shell of Fe$_3$O$_4$@mTiO$_2$-80 may be too small for easy detection using PXRD, while the products with larger nanocrystals in their shells (Fe$_3$O$_4$@mTiO$_2$-160 and Fe$_3$O$_4$@mTiO$_2$-120) have significantly stronger peak intensities. Further, we can propose a possible hypothesis: a higher reaction temperature leads to the formation of larger nanocrystals, which in turn, produce a larger gap between neighboring nanocrystals. A vibrating sample magnetometer (VSM) (Figure 3b) was employed to identify the magnetic properties and composition of the Fe$_3$O$_4$@mTiO$_2$-80. No
obvious magnetic hysteresis loops (Hc < 30 Oe) were observed for the three types of microspheres based on the field-dependent magnetization plots in the inset of Figure 3b, which indicates that all products possessed superparamagnetic features at room temperature. By comparing the saturation magnetization (Ms) value before and after coating of the TiO2 layers, the TiO2 content of the composite microspheres was estimated to be as high as 71 and 69 wt % for Fe3O4@TiO2 and Fe3O4@mTiO2-80, respectively. The high TiO2 content, together with the ultrahigh specific surface area, endows the Fe3O4@mTiO2-80 with a probable high enrichment capacity for phosphopeptides. Additionally, the high magnetic susceptibility caused by the cores with high magnetic response values makes the separation of the phosphopeptide-captured microspheres significantly easier and more efficient using magnetic separation. Otherwise, it would require high-speed centrifugation, and proteins with high molecular weights or poor solubility would sediment during this process.

3.2. Investigation of the Phosphopeptide Enrichment Ability of Fe3O4@mTiO2-80. The requirement of the material used for phosphopeptidome can be summarized by the following two points: (1) the material should have high selectivity toward phosphopeptide enrichment and (2) the material should have an appropriate pore size to realize the size exclusion effect. A phosphopeptidome study using Fe3O4@mTiO2-80 is illustrated in Scheme 2. When both proteins and peptides were mixed with Fe3O4@mTiO2-80, the proteins, including the phosphoproteins, were excluded by the entrance of the pore due to the size exclusion effect, while peptides were allowed to penetrate into the pore channel. Aided by the strong interaction between TiO2 and the phosphoric acid group, the phosphopeptides were anchored onto the surface of the TiO2 nanocrystals, allowing the other peptides to be washed away. Using magnetic separation, the phosphopeptide-captured microspheres could be isolated from the mixture, and then, the adsorbed phosphopeptides could be desorbed for further analysis.

To test the specificity of Fe3O4@mTiO2-80 in the phosphopeptide enrichment process, tryptic digests of standard phosphoprotein β-casein mixed with digests of standard non-phosphoprotein BSA at a molar ratio of 1:500 (with an initial concentration of β-casein at 100 fmol/μL) were used as a test sample. The standard phosphoprotein β-casein harbors three phosphorylated sites and generates three phosphopeptides after trypsin digestion with m/z at 2061.83, 2556.09, and 3122.27 in the MALDI spectrum. In a typical enrichment procedure, the β-casein and BSA digests were first dissolved in a 100 μL loading buffer consisting of 50% acetonitrile containing 5% trifluoroacetic acid (TFA) and were then incubated with Fe3O4@mTiO2-80. Afterward, the Fe3O4@mTiO2-80 with the captured phosphopeptides were separated from the mixed solution using an external magnetic field, and the phosphopeptides were washed with the loading buffer several times to remove nonspecifically adsorbed peptides. Finally, the phosphopeptides were eluted from the Fe3O4@mTiO2-80 with 10 μL of 5% NH4H2O, and 1 μL of this solution was used for MALDI-TOF MS analysis. Before enrichment, the spectrum was dominated by nonphosphopeptides, and no phosphopeptides were detected (Figure 4a). After the selective enrichment process, signals of the three phosphopeptides were easily detected with a clean background, as shown in Figure 4b. This result confirmed the high enrichment selectivity of Fe3O4@mTiO2-80 toward phosphopeptides.

It is well known that biologically active peptides exist in extremely low abundances. Therefore, the enrichment sensitivity of Fe3O4@mTiO2-80 was investigated. To determine the limit of detection (LOD), the loading amount of β-casein was decreased to the amount at which the S/N just exceeded 3. The enrichment sensitivity was determined as 5 fmol·μL−1, as illustrated in the MALDI mass spectrum, Figure S1, Supporting Information. We also compared the selectivity and sensitivity of this method with previous reports given in phosphopeptidome research. The selectivity of this method is significantly better than those previously reported, and the sensitivity is similar. The enrichment capacity and the post-enrichment recovery of the Fe3O4@mTiO2-80 composite microspheres toward phosphopeptides were further evaluated. The enrichment capacity of Fe3O4@mTiO2-80 for phosphopeptides was 480 mg·g−1 (Figure 4c). The high enrichment capacity can be attributed to the high TiO2 content and the extremely high surface area (>600 m2/g). The recovery of phosphopeptides from Fe3O4@mTiO2-80 was evaluated at 81% using an isotope labeling method (Figure S2, Supporting Information), which was satisfactory for phosphopeptide extraction. On the basis of these tests, we conclude that the Fe3O4@mTiO2-80 microspheres act as an ideal adsorbent for phosphopeptides.
3.3. Size Exclusion Capability of Fe₃O₄@mTiO₂-80. To confirm the size exclusion capability of Fe₃O₄@mTiO₂-80, a tryptic digest of β-casein was mixed into a protein mixture that included a standard phosphoprotein (β-casein, molecular weight of 24 kDa), a standard non-phosphoprotein (BSA, molecular weight of 66 kDa), and a standard non-phosphoprotein (cytochrome c from horse heart, molecular weight 11 kDa) with a mass ratio of 1:100:100:100 (initial concentration of β-casein at 10 ng/µL). Before enrichment, the mixture was directly analyzed using MALDI-MS, and the signals of any phosphopeptides were too weak for detection because of the interference of significant amounts of protein (Figure 5a). After enrichment, the phosphopeptides eluted from the Fe₃O₄@mTiO₂-80 were subjected to mass spectrometric analysis. As observed in Table 1, the adsorption capacity of Fe₃O₄@mTiO₂-80 for β-casein is 57.0 mg·g⁻¹, whereas this value for asialofetuin is only 3.6 mg·g⁻¹. The reason for this result is the fact that the molecular weight of asialofetuin is approximately twice that of β-casein. Therefore, it was impossible for asialofetuin to pass through the pores, whereas small amounts of β-casein were able to pass into the pore channels. The experimental results were also compared with the theoretical sizes of these proteins. In the literature, it has been reported that the radius of gyration (Rg) of the phosphorylated protein β-casein is 4.6 nm. The molecular weight (MW) of β-casein (M₁) is approximately 24,000. The MW of asialofetuin (M₂) is approximately 48,000, and the size of asialofetuin can be calculated from the Flory formula Rg ≈ M¹/². Hence, Rg for asialofetuin Rg₂ ≈ Rg₁ × (M₂/M₁)¹/² can be calculated as approximately 7 nm. Therefore, the diameters of β-casein and asialofetuin are approximately 9.2 and 14 nm, respectively. Additionally, because asialofetuin is also a glycoprotein with branched glycan chains, its actual size is likely larger than the theoretical size. The above data are the theoretical sizes of these proteins; further, the sizes of proteins are affected by other conditions, such as solvent, temperature, etc. Our experiments showed that higher amounts of adsorption were obtained for smaller phosphoproteins, and these results were generally consistent with the differences in the theoretical sizes of the molecules. The adsorption capacity of Fe₃O₄@mTiO₂-160 can provide additional powerful evidence for the size-exclusion capability of Fe₃O₄@mTiO₂-80. Because the pore size (8.6 nm) is larger than the size of either β-casein or asialofetuin, Fe₃O₄@mTiO₂-160 has a relatively large capacity for both β-casein and asialofetuin (134.4 and 67.6 mg·g⁻¹, respectively). Although Fe₃O₄@mTiO₂-80 can also adsorb a few low-molecular-weight phosphoproteins, its adsorption capacity for phosphoproteins is significantly lower than its adsorption capacity for phosphopeptides (480 mg·g⁻¹). The above results clearly indicate that Fe₃O₄@mTiO₂-80 possesses the desired size-exclusion capability against the proteins, including both non-phosphoproteins and phosphoproteins.

3.4. Highly Specific Revelation of the Phosphopeptidome of Snake Venom. To further apply our method to the analysis of the phosphopeptidome in real samples, we chose to analyze snake venom. As a complex mixture of proteins, peptides, and other components, such as metallic cations, carbohydrates, nucleosides, etc., the snake venom peptidome is a rich and valuable resource for drug discovery. Nevertheless, despite the progresses made in snake venom peptidome research, the phosphopeptidome of snake venom has rarely been studied. Herein, we enrich the phosphopeptidome in snake venom using Fe₃O₄@mTiO₂-80. After treatment with Fe₃O₄@mTiO₂-80 microspheres, the phosphopeptidome was enriched on the inner surface of the pores, while larger proteins, including phosphopeptides, were excluded. The phosphopeptides eluted from the microspheres were dried thoroughly using a vacuum centrifuge and then redissolved in an aqueous solution of 5% ACN containing 0.1% formic acid, separated using nano-LC, and analyzed using online ESI-MS/MS. After a database search, the peptide sequences were obtained. A representative spectrum is shown in Figure S3, Supporting Information. A total of 35 phosphopeptides were identified (Table S1, Supporting Information), accounting for 75% of the

Table 1. Comparison of the Material Properties of Two Types of Fe₃O₄@mTiO₂ and Their Adsorption Capacities for Asialofetuin and β-Casein

<table>
<thead>
<tr>
<th>Fe₃O₄@mTiO₂</th>
<th>pore size (nm)</th>
<th>adsorption capacity for β-casein (mg·g⁻¹)</th>
<th>adsorption capacity for asialofetuin (mg·g⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₃O₄@mTiO₂-80</td>
<td>3.4</td>
<td>57.0</td>
<td>3.6</td>
</tr>
<tr>
<td>Fe₃O₄@mTiO₂-160</td>
<td>8.6</td>
<td>134.4</td>
<td>67.6</td>
</tr>
</tbody>
</table>

Figure 5. MALDI mass spectra of the tryptic digest of β-casein in the mixture of proteins containing β-casein, BSA, and cytochrome C with a mass ratio of 1:100:100:100, (a) before and (b) after enrichment with Fe₃O₄@mTiO₂-80. “*, #”, and “●” indicate phosphorylated peptides, their dephosphorylated counterparts, and double charged counterparts, respectively.

dx.doi.org/10.1021/am501339e | ACS Appl. Mater. Interfaces 2014, 6, 6290–6299
total identified peptides. Figure 6a shows that all of the identified phosphopeptides had molecular weights ranging from 1,000 to 5,000 Da, which is consistent with the size-exclusion effect. Figure 6b shows that the pI values of most phosphopeptides range from 2.0 to 4.0 because the negatively charged phospho-group decreases the pI of the peptides. Additionally, we noticed that the identified phosphopeptides harbored between one and five phosphorylated sites (Figure 6c), which suggests that Fe₃O₄@mTiO₂-80 was able to efficiently capture phosphopeptides with one or more phosphorylated sites. This fact further indicates the universality of this extraction method toward phosphoproteome. Finally, we analyzed the subcellular locations of these identified phosphopeptides according to their precursor proteins. These 35 phosphopeptides correspond to 23 precursor proteins. All of these precursor proteins were annotated as secreted proteins (Figure 6d). The subcellular locations are in accordance with previous results because the proteins in the snake venom are secreted from the gland. Among the 23 proteins, 16 precursor proteins exist at the protein level, and 7 precursor proteins are present at the transcriptional level. For example, the precursor protein of these three identified phosphopeptides KpTpS-THIAPLSLPSSPSPSVSGVCRIM*GWGpTVpT,S, N.RPV-KTSpTHIAPLpSLpSpSPPpSVGSVCRIM*GWGTVTSPN,E, KNYpTKWDKDIM*LIKLNRPVKpTpSpTHIAPLpS.L is Serine protease VLSP-3. This protein is present at the transcriptome level in the venom gland of Macrovipera lebetina. These experimentally identified phosphopeptides provided the experimental basis for the existence of Serine protease VLSP-3 at the protein level with the 105th, 122nd, 123rd, 124th, 130th, 133rd, 134th, 137th, 149th, and 151st sites of the amino acid sequence as the phosphorylated sites.

4. CONCLUSIONS

In summary, magnetic mesoporous titania microspheres (Fe₃O₄@mTiO₂-80) with a well-defined core/shell structure were successfully synthesized by directly coating amorphous titania onto the surface of MCNCs, followed by a hydrothermal process at 80 °C. The temperature of the hydrothermal treatment is critical for converting the amorphous titania into a crystalline structure with the desired pore diameter (3.4 nm) and a narrow pore size distribution. Moreover, the resulting products also have prominent specific surface areas (as high as 603.5 m²/g) and high magnetic susceptibilities. By utilizing these features, Fe₃O₄@mTiO₂-80 selectively extracted low-abundance phosphopeptides from complicated samples containing large amounts of proteins and nonphosphopeptides. By applying this approach, we successfully identified 35
phosphopeptides in a real sample of snake venom, which accounted for 75% of the total identified peptides.

ASSOCIATED CONTENT

† Supporting Information

Enrichment capacity of Fe₃O₄@mTiO₂ towards phosphopeptides and phosphoproteins, enrichment sensitivity of Fe₃O₄@mTiO₂ towards phosphopeptides, enrichment recovery of Fe₃O₄@mTiO₂ towards phosphopeptides, and representative MS/MS spectrum of the phosphopeptide. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: ccwang@fudan.edu.cn.
*E-mail: luhaojie@fudan.edu.cn.

Author Contributions

‡Y.Z. and W.M. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Science and Technology Key Project of China (2012CB910602, 2012AA020204, and 2012CB910103), the National Science Foundation of China (Grant Nos. 21025519, 51073040, and 21335002), and Shanghai Projects (Grants Eastern Scholar, 11XD1400800, 13520720200, and B109).

REFERENCES

