Biomimetic Submicroarrayed Cross-Linked Liquid Crystal Polymer Films with Different Wettability via Colloidal Lithography

Yuanyuan Zhan, ‡ Jianqiang Zhao, ‡ Wendong Liu, ‡ Bai Yang, ‡ Jia Wei, ‡ and Yanlei Yu* ‡

1Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
2State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China

Supporting Information

ABSTRACT: Photoresponsive cross-linked liquid crystal polymer (CLCP) films with different surface topographies, submicropillar arrays, and submicrocone arrays were fabricated through colloidal lithography technique by modulating different types of etching masks. The prepared submicropillar arrays were uniform with an average pillar diameter of 250 nm and the cone bottom diameter of the submicrocone arrays was about 400 nm, which are much smaller than previously reported CLCP micropillars. More interestingly, these two species of films with the same chemical structure represented completely different wetting behavior of water adhesion and mimicked rose petal and lotus leaf, respectively. Both the submicropillar arrayed film and the submicrocone arrayed film exhibited superhydrophobicity with a water contact angle (CA) value of $144.0 \pm 1.7°$ and $156.4 \pm 1.2°$, respectively. Meanwhile, the former demonstrated a very high sliding angle (SA) greater than $90°$, and thus, the water droplet was pinned on the surface as rose petal. On the contrary, the SA of the submicrocone arrayed CLCP film consisting of micro- and nanostructures was only $3.1 \pm 2.0°$, which is as low as that of lotus leaf. Furthermore, the change on the wettability of the films was also investigated under alternating irradiation of visible light with two different wavelengths, blue light and green light.

KEYWORDS: liquid crystal polymer, wettability, colloidal lithography, submicropillar, submicrocone

INTRODUCTION

In nature, many biological materials exhibit unusual water repellency with aquatic high-loading and/or self-cleaning character, such as plant leaves, insect wings, water strider legs and moths eyes. Superhydrophobic properties with a contact angle (CA) higher than $150°$ originate from the combination of special micro/nano structures and low surface energy. It is well-known that the roughness of protrusions leads to a reduced contact area between the surface and the water droplet. Thus, air is available to trap into microgrooves to form a cushion at the solid–liquid interface that prevents the solid from being wetted. Inspired by this concept, liquid-repellent microtextured surfaces with liquid stickiness and nonstickiness have been widely studied. The stick surface shows high surface adhesive force, and the water droplet can be pinned on the surface, while the nonstick surface allows the water droplet to easily roll off at a tilted angle less than $5°$ as a result of extremely low water adhesion. Because they have a range of potential applications, such as self-cleaning surfaces, no-loss transport of microdroplets, and so on, various techniques were applied to preparing microstructural surfaces, such as laser irradiation, replica molding, spin-coating, nanoimprint lithography, and etching techniques. Among them, nanosphere lithography has been commonly used in recent years, for it is time-saving and can be modulated throughout etching procedure, which finely regulate the structural parameters such as shapes and dimensions. Yang et al. reported a colloidal lithography method using two-dimensional silica colloidal crystals as masks to fabricate ordered silicon cone arrays with controllable morphologies on a silicon substrate, and investigated their wettability in detail. Also, Jiang et al. used spin-coated silica colloidal monolayer as etching mask to fabricate broadband antireflection coatings that mimic antireflective moth eyes. Recently, Yang et al. presented a facile method to fabricate bioinspired polyethylene terephthalate nanocone arrays via colloidal lithography, and the sample exhibited underwater superoleophobicity with the underwater oil CA of $171.8°$ and antibioadhension behavior. Most of these works emphasized hydrophobicity/hydrophilicity of surfaces achieved on different samples. Few of them involved a way of controlling water adhesion on superhydrophobic
surface, which requires external stimuli to precisely manipulate surface composition.

To mimic the structure and function of biological systems, the search for smart materials that respond to external stimuli with shape or size change has attracted increasing attention.26−28 Cross-linked liquid crystal polymers (CLCPs) appear as very promising candidates to build responsive surfaces because they possess such unique properties as elasticity, anisotropy, stimuli-responsiveness, and molecular cooperation effect.29,30 The CLCPs, acted as actuators or artificial muscles,31 can contract reversibly under various stimuli such as light32,33 and temperature.34−36 Conventionally, stimuli-responsive microactuators were fabricated from CLCPs using replica molding technique27,34 and inkjet printing technology.37 These CLCPs microactuators have greatly promoted the development of the field of surface-responsive surfaces where small geometric variations often lead to dramatic changes in surface properties, such as roughness and wettability. Keller et al. made micrometer sized thermal-actuated CLCP actuators using replica molding technique, which contracted reversibly by heating or cooling above their isotropic transition temperature.25 Our group fabricated micrometer-scale arrayed CLCP films with superhydrophobic properties by polydimethylsiloxane-soft-template-based secondary replication.21 Also, we used replica molding technique to prepare a two-dimensional CLCP microarray with a period of about 1 μm.32 The CLCP microarray showed switchable behavior on the reflection spectra under alternating irradiation of UV and visible light. However, there still remain many challenges in this field.

Above-mentioned microarrayed surfaces achieved with the CLCP pillars size of few micrometers were obtained by complex techniques. Moreover, few works focus on the fabrication of various types of surface morphologies and nanoscale structural arrays based on the CLCPs, which, however, play dominant roles in surface wettability. Herein, we present two different surface topographies including submicropillar arrays and submicrocone arrays fabricated from azotolane-containing CLCP by using a time-efficient and high throughput etching technique of colloidal lithography. These two surfaces with different topographies exhibited superhyrophobicity and completely different wetting behavior of water adhesion, which can be easily obtained by modulating different types of etching masks throughout the fabrication process. The submicropillar arrayed film had a very high water sliding angle (SA) greater than 90°, whereas the submicrocone arrayed film exhibited an extremely low water SA of 3.1 ± 2.0°. Moreover, the submicropillar arrayed film still demonstrated the high water adhesion after blue light

![Figure 1.](attachment:image_url)

(a) Chemical structures and phase transition temperature of the LC monomers A11ABT and C11A. K, crystal; N, nematic; I, isotropic. (b and c) Schematic procedure of fabrication of microarrayed CLCP films. (b) Submicropillar arrayed CLCP film was obtained by four steps: First, silica microspheres were self-assembled on the surface of the cleaned CLCP films to prepare hcp 2D silica colloidal crystals monolayer via the modified interface method. Then, CLCP submicropillar arrays were prepared by the reactive ion etching (RIE) (1, 2) using a 7:3 mixture of CHCF3 and Ar as a process gas and oxygen gas, successively. Finally, the remained silica microspheres were removed by 1% HF solution. (c) Submicrocone arrayed CLCP film was obtained by two steps: First, PS microspheres were self-assembled on the surface of the cleaned CLCP film to form hcp 2D PS colloidal crystals monolayer via the modified interface method. Then, CLCP submicrocone arrays were obtained by a short time RIE (3) using 2D PS colloidal crystals as masks.
irradiation, while SA of the submicroarrayed CLCP film after the blue light irradiation became twice as large as before. It is the first time to use the colloidal lithography technique to fabricate the CLCP films with submicro and even nanoscale structures, which have the same chemical structure but demonstrate different superhydrophobic adhesive properties to mimic rose petal and lotus leaf, respectively. These submicroarrayed CLCP films have potential applications as new smart surfaces with custom-tailored superhydrophobicity and water adhesion.

MATERIALS AND METHODS

Materials

The monomers used in this work include an azotolane monomer with a longer spacer (A11ABT) and a nonazotolane cross-linker with the undecyl spacer (C11A). The synthesis of A11ABT and C11A was carried out in a similar method which has been published. The azotolane-containing CLCP films were prepared according to our previous work, in which the mesogens were aligned parallel to the rubbing direction of polyimide due to the anchoring effect. The silica microsphere used in our work was 350 nm in diameter, purchased from Sphere Scientific Corporation. The polystyrene (PS) microspheres used was 1 μm in diameter, synthesized by the emulsion polymerization method.

Fabrication of Submicroarrayed CLCP Film

The CLCP submicroarrayed arrays were fabricated by colloidal lithography. First, the silica microspheres were used to fabricate a hydrophobic surface treatment using trichloro(1H,1H,2H,2H-perfluorooctyl) silane. Then, silica microspheres were self-assembled on the surface of the cleaned CLCP films to prepare hexagonal-close-packed (hcp) 2D silica colloidal crystals monolayer via the modified interface method. Subsequently, the CLCP submicroarrayed arrays were prepared by reactive ion etching (RIE), using 2D silica colloidal crystals as masks by two steps. The RIE (1) process was performed using a 3:1 mixture of CHC3F3 and Ar as a process gas at a total flow rate of 50 SCCM, chamber pressure 30 mTorr, RF power of 200 W, and ICP power of 0 W. Etching time was set to 3 min. The RIE (2) process was performed using 50 SCCM oxygen gas flow rate, chamber pressure 30 mTorr, RF power of 250 W, and ICP power of 50 W. Etching time was set to 20 min. After RIE, the remaining silica microspheres were removed by 1% HF solution.

RESULTS AND DISCUSSION

Figure 1a shows the chemical structures of azotolane-containing monomer (A11ABT) and nonazotolane cross-linker with the undecyl spacer (C11A). The microarrayed CLCP films composed of A11ABT and C11A are prepared by thermal polymerization of mixtures including the monomer and the cross-linker with a molar ratio of 1:9. Figure 1b,c represents the procedure for the fabrication of the submicroarrayed CLCP film and the submicroarrayed CLCP film.

![Fabrication of Submicroarrayed CLCP Film](image-url)
Research Article

over a large area (Figure 2a). These images demonstrate that hexagonal nonclose-packed arrays vertical to the glass substrate exhibited enhanced hydrophobicity with a CA of 116.1 ± 144.0° respectively, while the surface after green light irradiation is in trans-state, and the average CA and SA are 154.5 ± 1.2° and 6.1 ± 2.2°, respectively.

Importantly, SA in both arrays (Figure S1). The submicropillar arrayed CLCP guarantees the homogeneous distribution of the submicropillar microspheres account for almost 99% of the area, and this submicropillar arrays are uniform with an average diameter of sub-250 nm and an aspect ratio of 8. Although there exist some lines and point defects in self-assembled silica microspheres lifted up to the CLCP substrate of 2 cm², the silica microspheres account for almost 99% of the area, and this guarantees the homogeneous distribution of the submicropillar arrays (Figure S1). The submicropillar arrayed CLCP film exhibited enhanced hydrophobicity with a water CA value of 144.0 ± 1.7°; while the flat CLCP film exhibited only hydrophobicity with a CA of 116.1 ± 2.0° (Figure S2). Importantly, SA in both trans and cis states were greater than 90°, that is, a water droplet on the surface of the submicropillar arrayed CLCP film was sphere in shape, which did not roll off even when the film was turned upside down (Figure 2b inset).

These results demonstrate the submicropillar arrayed CLCP film provides a sufficient roughness for superhydrophobicity and yet high adhesive force with water on the surface, similar to the rose petal effect.

As Figure 2c,d shows, the water CA of 141.7 ± 0.9° in cis-configuration is lower than that in trans-configuration (144.0 ± 1.7°), which is in accordance with the trans to cis configuration transition induced by blue light, because of the higher local polarity in cis configuration. Subsequently, the azotolane mesogens return to a trans configuration, and the surface reverts to the higher CA after 530 nm light irradiation for 120 s. The CAs of the submicropillar arrayed CLCP film have no distinct difference before and after the blue light irradiation. Compared with UV light at 365 nm, when the CLCP films are irradiated by blue light with a longer wavelength of 470 nm, azotolane mesogens are difficult to undergo trans to cis photoisomerization because the available photons energy of the blue light to induce the photoisomerization decreases due to the lower absorption coefficient of the azotolane moieties at 470 nm than at 360 nm.

Figure 2b, inset, shows the shape of a water droplet on the CLCP film when it is turned upside down, indicating its high water adhesion. We believe that the trapped air in submicrogrooves between pillars form a cushion at the film-water interface (Figure 2c, inset).

Topography and Wetting Behavior of the Submicropillar Arrayed CLCP Film. The SEM photographs of the submicropillar arrayed CLCP film on the glass substrate are shown in Figure 2a,b. It can be seen that submicropillars exhibit hexagonal nonclose-packed arrays vertical to the glass substrate over a large area (Figure 2a). These images demonstrate that the submicropillar arrays are uniform with an average diameter of sub-250 nm and an aspect ratio of 8. Although there exist some lines and point defects in self-assembled silica microspheres lifted up to the CLCP substrate of 2 cm², the silica microspheres account for almost 99% of the area, and this guarantees the homogeneous distribution of the submicropillar arrays (Figure S1). The submicropillar arrayed CLCP film exhibited enhanced hydrophobicity with a water CA value of 144.0 ± 1.7°; while the flat CLCP film exhibited only hydrophobicity with a CA of 116.1 ± 2.0° (Figure S2). Importantly, SA in both trans and cis states were greater than 90°, that is, a water droplet on the surface of the submicropillar arrayed CLCP film was sphere in shape, which did not roll off even when the film was turned upside down (Figure 2b inset).

These results demonstrate the submicropillar arrayed CLCP film provides a sufficient roughness for superhydrophobicity and yet high adhesive force with water on the surface, similar to the rose petal effect.

As Figure 2c,d shows, the water CA of 141.7 ± 0.9° in cis-configuration is lower than that in trans-configuration (144.0 ± 1.7°), which is in accordance with the trans to cis configuration transition induced by blue light, because of the higher local polarity in cis configuration. Subsequently, the azotolane mesogens return to a trans configuration, and the surface reverts to the higher CA after 530 nm light irradiation for 120 s. The CAs of the submicropillar arrayed CLCP film have no distinct difference before and after the blue light irradiation. Compared with UV light at 365 nm, when the CLCP films are irradiated by blue light with a longer wavelength of 470 nm, azotolane mesogens are difficult to undergo trans to cis photoisomerization because the available photons energy of the blue light to induce the photoisomerization decreases due to the lower absorption coefficient of the azotolane moieties at 470 nm than at 360 nm.

Figure 2b, inset, shows the shape of a water droplet on the CLCP film when it is turned upside down, indicating its high water adhesion. We believe that the trapped air in submicrogrooves between pillars form a cushion at the film-water interface (Figure 2c, inset). Thus, when the water droplet is drawn on the surface, the volume change of trapped
Research Article

Topography and Wetting Behavior of the Submicrocone Arrayed CLCP Film. Naturally, lotus leaf is well-known for its superhydrophobicity owing to micro- and nanostructures together with hydrophobic epicuticular wax secreted on the surface. On the basis of this study, we designed a unique lotus-like superhydrophobic submicrocone arrayed CLCP film, with the value of CA as high as 156.4 ± 1.2° and a low SA of 3.1 ± 2.0°, to remove the surface stickiness by avoiding formation of closed air pockets. The assumed mode for this superhydrophobicity is that the water droplet rides only on the extreme top portions of the submicrocone arrayed CLCP film, as shown in Figure 3c inset. Figure 3a,b show the SEM images of the top view and the tilted-view of the lotus-like submicrocone arrayed CLCP film. The submicrocone with an aspect ratio of 3 is about 400 nm in bottom diameter. Figure S3 shows the SEM image of the self-assembled PS microspheres lift up to the CLCP substrate of 2 cm². The PS microspheres occupy more than 99% of the area though there are some lines and point defects involved, which leads to ordered submicrocone arrays.

It is clearly seen from inset in Figure 3a that the submicrocone possesses hierarchical structures created by nanostructures on microstructures, which is similar to those of the lotus leaf. As a result, the submicrocone arrayed CLCP film featured superhydrophobic antiadhesiveness to water. It has been reported that available air trapped in the microgroove of the surface is important for enlarging the CA and lowering the SA. Compared with microgrooves among the submicropillar arrays, those between the submicrocone arrays are more sufficient to trap air. Additionally, the reason for the SA of the submicrocone arrayed CLCP film lower than 5° is discrete contact between the solid surface and liquid, which affects the shape, the contact length, and continuity of three-phase contact line. In general, an unstable contact line can generate in a lower energy barrier for advancing and receding of the water droplet, thus resulting in a small SA.

The difference of CA value with alternating blue and green irradiation is very small due to the decreased contact length (Figure 3cd), while the SA value after the blue light irradiation is twice as much as that after the green light irradiation (Figure 3ef). The SA change of the submicrocone arrayed film ranging from 3.1 ± 2.0° to 6.1 ± 2.2° is induced by the photoisomerization of the azotolane moieties from trans-state to cis-state. Additionally, photodeformation is possible to generate in microarrays when the film is exposed to 470 nm light due to the photoinduced alignment change of LC mesogens. The thermal photographs of the submicroarrayed CLCP films were also measured, as Figure S5 in the Supporting Information demonstrates. The temperature of the submicropillar CLCP film and the submicrocone CLCP film increased by less than 2 °C when irradiated by blue light of 120 mW cm⁻² for 120 s. This weak thermal effect cannot induce thermal deformation in the submicroarrays, since the nematic–isotropic phase transition temperature of the CLCP films is around 100 °C.

Photoinduced Repeatable Wetting Behavior of the Submicroarrayed CLCP Films. It can be seen from Figure 4 that the CAs of both microarrayed CLCP films are increased with the introduction of surface roughness, even high into the superhydrophobic region. The water adhesion on the submicrocone arrayed film is obviously smaller compared with the case of the flat film or the submicropillar arrayed film. We ascribe this to contact mode switching from Wenzel to Cassie mode with increasing surface roughness. The shape change of the post from pillar to cone also leads to decreases in hysteresis due to the more contorted contact lines that form on these microarrayed films. The CA increase from micropillar to microcone arrays is attributed to the decrease in the contact length and increase in tortuosity of the three-phase contact line.

Furthermore, reversible switching of CAs was induced well after 10 cycles in both microarrayed films under alternative irradiation of blue and green light. The lower CAs after blue light irradiation is due to photoisomerization of the azotolane mesogens from trans-state to cis-state, while the azotolane mesogens return to trans-state and both surfaces revert to higher CAs after green light irradiation. The submicropillar arrayed film kept the high water adhesion after the blue light irradiation, while the photoinduced reversible SA change of the submicrocone arrayed film was induced by alternating blue and green light irradiation. These results offer important information for designing controllable wettability with diverse surface topography.

CONCLUSIONS

In conclusion, the submicropillar arrayed CLCP film and the submicrocone arrayed CLCP film with different wettability due to the controllable surface topography were fabricated using colloidal lithography technique. The microarrayed pillar and cone are uniform with average diameters of sub-250 nm and sub-400 nm, respectively, which are much smaller than ever reported. Owing to the surface chemistry and surface morphology designed to obtain substantial hydrophobicity, the submicropillar arrayed film exhibited hydrophobicity with high water adhesion similar to the case of rose petal, while the submicrocone arrayed film possessing a hierarchical morphology with dual length scale showed the water repellent characteristic, which can be favorably compared to that of the lotus leaf. Reversible CAs switching in superhydrophobic region was observed in both microarrayed films when alternately irradiated by blue and green light. Moreover, the submicropillar

Figure 4. Ten cycles of CA and SA measurements with a 5 μL water droplet on the submicropillar arrayed CLCP film and the submicrocone arrayed CLCP film with alternating irradiation of blue light (470 nm, 120 mW cm⁻²) and green light (530 nm, 30 mW cm⁻²) for 120 s. The solid line and dash–dot line show the 10 cycles of CA and SA measurements of the submicrocone arrayed CLCP film, respectively. The dotted line shows the 10 cycles of CA measurement of the submicroarrayed CLCP film.
arrayed film still demonstrated the high water adhesion after the blue light irradiation, while the photoinduced reversible SA change of the submicron arrayed film ranging between 3.1 ± 2.0° and 6.1 ± 2.2° was induced by alternating blue and green light irradiation. We believe that such a colloidal lithography method, in conjunction with CLCP, can be implemented to produce various types of surface topographies with further dynamic surface wettability just by regulating the etching masks throughout the fabrication process. It is anticipated that different surface topographies reported here may develop new promising applications of the CLCPs, especially in microfluidic devices, self-cleaning windows, and some other fields beyond the reach of current technologies.

■ ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.5b09013.

The SEM images of silica microspheres self-assembled on the CLCP substrate, the flat CLCP film exhibiting hydrophobicity and the self-assembled PS microspheres (about 1 μm in diameter) over a large area, and tilt view SEM images of the submicropillar array and the submicron array, as well as thermal photographs of the submicrorarrayed CLCP films. (PDF)

■ AUTHOR INFORMATION

*E-mail: ylyu@fudan.edu.cn.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported financially from the National Natural Science Foundation of China (Nos. 21134003, 21273048, 51225304, and 51203023), and Shanghai Outstanding Academic Leader Program (No. 15XD1500600).

■ REFERENCES

