Flexible Hybrid Membranes of NiCo$_2$O$_4$-Doped Carbon Nanofiber@MnO$_2$ Core−Sheath Nanostructures for High-Performance Supercapacitors

Feili Lai,† Yue-E Miao,† Yunpeng Huang,† Tai-Shung Chung,‡ and Tianxi Liu,*†

†State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, PR China
‡Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576, Singapore

Supporting Information

ABSTRACT: Construction of MnO$_2$-based hybrid nanostructures with carbonaceous materials has been considered as one of the most efficient strategies to overcome excessive aggregations of MnO$_2$ particles. Here, a facile approach of growing δ-phase and γ-phase MnO$_2$ with distinctly different morphologies on highly conductive NiCo$_2$O$_4$-doped carbon nanofibers (NCCNFs) through the combination of electrospinning, solution codeposition, and redox deposition methods is presented to form NCCNF@MnO$_2$ nanosheet (or nanorod) core−sheath nanostructures. The obtained two kinds of flexible hybrid membranes with hierarchical nanostructures are both evaluated as electrodes for high-performance supercapacitors. The greatly improved specific surface areas for ionic adsorption, significantly enhanced conductivity of NCCNF, and an open three-dimensional network for rapid electron transportation during the electrochemical processes jointly lead to remarkably enhanced specific capacitances of 918 and 827 F g$^{-1}$ (based on the active materials) at a scan rate of 2 mV s$^{-1}$ and good cycling ability with 83.3% and 87.6% retention after 2000 cycles for NCCNF@MnO$_2$ nanosheet and NCCNF@MnO$_2$ nanorod hybrid membranes, respectively. Therefore, this work suggests a novel strategy for design and potential application of MnO$_2$ hybrid materials in high-performance supercapacitors.

1. INTRODUCTION

Supercapacitors, also called electrochemical capacitors (ECs), have attracted great attention due to their numerous desirable properties, such as fast charge/discharge process, long-term stability, and high power density.$^{1-6}$ Countless materials have been widely investigated as electrode materials for ECs, including carbonaceous materials, conducting polymers, and metal oxides/hydroxides.$^{7-9}$ Among the metal oxides/hydroxides (e.g., RuO$_2$, MnO$_2$, Co$_3$O$_4$, Ni(OH)$_2$), MnO$_2$ is one of the most attractive materials because of its low cost, environmental compatibility, and high theoretical pseudocapacitance.$^{10-14}$ Subramanian et al. have synthesized various manganese oxide nanostructures with capacitance values in the range of 72−168 F g$^{-1}$ by controlling the synthesis conditions.15 However, due to their intrinsically poor electrical conductivity and severe aggregation during the electrochemical process, conventional MnO$_2$ electrode materials show low capacitances ranging from 150 to 300 F g$^{-1}$, which are far less than the theoretical value of

Received: March 21, 2015
Revised: May 20, 2015
Published: May 27, 2015
An effective strategy has been exploited by developing MnOx-carbonaceous hybrid materials, such as MnOx-carbon nanofoam, MnOx-carbon nanotubes, MnOx/graphene, MnOx/carbon nanofibers, and MnOx/carbon aerogel hybrid materials, to efficiently improve their electrochemical performance.

You et al. reported a ternary nanocomposite of MnOx, carbon nanotubes, and graphene oxide as electrode material, showing ideal capacitive behavior, large specific capacitance, high energy density, and power density. Zhao et al. developed a facile preparation of powdery carbon@MnOx core–shell hybrid nanospheres with various nanostructures of MnOx shells by simply controlling the reaction time. The hybrid nanospheres thus obtained exhibit a high capacitance of 252 F g\(^{-1}\) (based on the mass of MnOx) at a scan rate of 2 mV s\(^{-1}\) and good cycling ability with 74% retention after 2000 cycles. In spite of the excellent electrochemical performance, most of the above powdery materials need to be blended with conductive and binding agents to form film electrodes. Nevertheless, the poor mechanical properties of thus mixed electrode materials dramatically restrict their practical application as high-performance electrodes for supercapacitors. Worse still, introduction of excess binding agents severely affects the conductivity and electrochemical performance of film electrodes. Therefore, it is of significance to develop binder-free electrode materials to meet the ever-increasing demands in flexible and portable electronic equipment.

Electrospinning has been considered as an effective approach to produce continuous fiber membranes as a binder-free carbonaceous template, which exhibits micron-sized or even nanosized fiber diameter, large specific surface area and excellent mechanical properties. Beneficial from these outstanding characteristics, electrospun carbon nanofiber (CNF) membranes are promising as electrode materials for Li-ion batteries, supercapacitors, and electrochemical catalysis. Additionally, the conductivity of electrospun CNF can be dramatically increased by incorporating conductive polymers or metal oxides, which will be beneficial to maintain high specific capacitances even at high scan rates. Nickel—cobalt oxide (NiCoO\(_x\)) is one kind of highly conductive binary metal oxide, which can dramatically enhance the electrochemical performance of the carbonaceous template due to its inherently pseudocapacitive characteristics. Therefore, it is a strategic way to hybridize NiCoO\(_x\) into electrospun carbon nanofibers as high-performance membrane electrodes for next-generation energy storage devices.

In this work, NiCoO\(_x\)-doped carbon nanofiber@MnOx nanosheet (NS) and nanorod (NR) hybrid membranes are facilely fabricated through the combination of electrospinning, solution codeposition, and redox deposition methods. By constructing NiCoO\(_x\)-doped carbon nanofibers (NCCNFs) with two-dimensional (2D) MnOx nanosheets or one-dimensional (1D) MnOx nanorods, novel core—sheath nanostructures of the NCCNF@MnOx nanosheet and NCCNF@MnOx nanorod are generated to efficiently prevent the aggregation of MnOx nanoparticles, increase the specific surface area, and offer an open three-dimensional (3D) network for rapid electron transport during the charge—discharge processes. Typically, remarkably enhanced capacitive performance is achieved with the specific capacitance of 918 and 827 F g\(^{-1}\) (based on the active materials) at a scan rate of 2 mV s\(^{-1}\) for the NCCNF@MnOx nanosheet and NCCNF@MnOx nanorod hybrid membranes, respectively. Furthermore, this facile and universal method can be extended to the fabrication of other hierarchically organized hybrid membranes combining carbonaceous and pseudocapacitive materials for potential high-performance supercapacitor applications.

2. EXPERIMENTAL SECTION

2.1. Materials. Polyacrylonitrile (PAN, Mw = 150 000 g mol\(^{-1}\)) was purchased from Sigma-Aldrich. Nickel nitrate hexahydrate (Ni(NO\(_3\))\(_2\)-6H\(_2\)O) was purchased from Aladdin Chemical Reagent Co. Cobalt nitrate hexahydrate (Co(NO\(_3\))\(_2\)-6H\(_2\)O), hexamethylenetetramine (HMT), potassium permanganate (KMnO\(_4\)), manganese sulfate monohydrate (MnSO\(_4\)-H\(_2\)O), ammonium persulfate ((NH\(_4\))\(_2\)S\(_2\)O\(_8\)), APS, N,N-dimethylformamide (DMF), sodium hydroxide (NaOH), and sulfuric acid (H\(_2\)SO\(_4\)) were all purchased from Sinopharm Chemical Reagent Co. All chemicals were of analytic grade and used without further purification.

2.2. Preparation of Electrospun NCCNF@MnOx NS and NR Hybrid Membranes. First, powdery Ni—Co layered double hydroxides (Ni—Co LDH) were synthesized by the solution codeposition method. Briefly, 0.5 mmol of Ni(NO\(_3\))\(_2\)-6H\(_2\)O, 1.0 mmol of Co(NO\(_3\))\(_2\)-6H\(_2\)O, and 5 mmol of HMT were dissolved in a mixed solvent of 20 mL of ethanol and 20 mL of deionized water to form a transparent pink solution. The mixed solution was kept in an oil bath at 80 °C for 8 h to achieve light green precipitates of Ni—Co LDH, which was then washed with deionized water and ethanol, isolated by centrifugation, and dried at 70 °C for 24 h.

Second, 200 mg of dried Ni—Co LDH powder was dissolved in 5 mL of DMF to form Ni—Co LDH solution, and 1.0 g of PAN powder was dissolved in 5 mL of DMF under magnetic stirring for 6 h to form PAN solution. Then, these two solutions were mixed together under magnetic stirring for another 6 h to form a transparent bicomponent spinning solution, which was sucked into a 10 mL plastic syringe with a stainless steel needle having an inner diameter of 0.5 mm. The electrospun membranes were produced at an applied voltage of 18 kV with a feeding speed of 1 mL h\(^{-1}\) and a distance of 15 cm between the needle tip and aluminum foil collector. After collecting for 45 min, electrospun Ni—Co LDH-doped PAN hybrid membranes were generated. The obtained membranes were then preoxidized to 250 °C in air atmosphere for 2 h with a heating rate of 2 °C min\(^{-1}\), followed by heating up to 600 °C in a nitrogen flow with a heating rate of 3 °C min\(^{-1}\) and holding there for half an hour. Thus, with PAN nanofibers turning into carbon nanofibers and Ni—Co LDH dehydrating to form NiCoO\(_x\) particles, NiCoO\(_x\)-doped carbon nanofiber (NCCNF) membranes were obtained.

Finally, the NCCNF membranes were immersed into a purple-red solution of KMnO\(_4\) at 80 °C in an oil bath for 10 h. After the redox deposition reaction, the synthesized hybrid membranes were rinsed with deionized water several times and dried in a vacuum oven at 60 °C for 6 h. According to different weight ratios of NCCNF membranes to KMnO\(_4\) (varying from 5:1, 2:1, 1:1, 1:2, to 1:5), the samples prepared by the above-mentioned steps were, respectively, labeled as NCCNF@MnOx NS-1, NCCNF@MnOx NS-2, NCCNF@MnOx NS-3, NCCNF@MnOx NS-4, and NCCNF@MnOx NS-5. Meanwhile, bare carbon nanofiber membranes coated with MnOx nanosheets (denoted as CNF@MnOx NS-1:1) were also synthesized in the same way with equal weight proportion of MnOx nanosheet and NCCNF@MnOx nanorod hybrid membranes, respectively.
The redox reaction during the synthesis of MnO₂ nanosheets is given below:

\[
4\text{KMnO}_4 + 3\text{C} + \text{H}_2\text{O} = 4\text{MnO}_2 + 2\text{KHCO}_3 + \text{K}_2\text{CO}_3
\]

Analogously, NCCNF membranes coated with MnO₂ nanorods (denoted as NCCNF@MnO₂ NRs) were easily prepared through the redox deposition method by replacing KMnO₄ solution with 40 mL of aqueous solution containing 8 mmol of MnSO₄·H₂O and 8 mmol of APS at 80 °C in an oil bath for 2 h. Simultaneously, bare carbon nano fiber membranes coated with MnO₂ nanorods (denoted as CNF@MnO₂ NR) were synthesized via the same way for comparison. The chemical reaction between Mn²⁺ and S₂O₈²⁻ can be formulated by the following equation:

\[
\text{MnSO}_4 + (\text{NH}_4)_2\text{S}_2\text{O}_8 + 2\text{H}_2\text{O} = \text{MnO}_2 + (\text{NH}_4)_2\text{SO}_4 + 2\text{H}_2\text{SO}_4
\]

All of the prepared membranes were washed with deionized water several times to remove byproducts on the surface of samples. The whole preparation procedures of NCCNF@MnO₂ NS and NR hybrid membranes are schematically shown in Figure 1.

2.3. Characterization

Morphologies of the samples were observed by a field emission scanning electron microscope (FESEM, Ultra 55, Zeiss) at an acceleration voltage of 5 kV. Transmission electron microscopy (TEM) was performed by a JEOL JEM 2100 TEM at an acceleration voltage of 200 kV. Phase structures of the samples were investigated by X-ray diffraction (XRD, X'pert PRO, PANalytical) with Cu Kα radiation (λ = 0.1542 nm) at an angular speed of (2θ) 5° min⁻¹ from 10° to 70° under a voltage of 40 kV and a current of 40 mA. The surface chemical compositions of the samples were analyzed by X-ray photoelectron spectroscopy (XPS) on a RBD upgraded PHI-5000C ESCA system (PerkinElmer) with Al Kα (hν = 1486.6 eV). All XPS spectra were corrected using the C 1s line at 284.6 eV, while curve fitting and background subtraction were accomplished using RBD AugerScan 3.21 software. Thermogravimetric analyses (Pyris 1 TGA) were performed under air flow from 100 to 800 °C at a heating rate of 20 °C min⁻¹. To emphasize, due to the tiny contribution of NiCo₂O₄ for the hybrid materials, the active materials in manuscript only refer to the MnO₂ part.

2.4. Electrochemical Measurements

Electrochemical measurements were performed in 1 M Na₂SO₄ aqueous solution on an electrochemical workstation (CHI600E, Chenhua Instruments Co. Ltd., Shanghai) with a standard three-electrode setup, where the as-obtained membrane was directly used as the working electrode and Ag/AgCl and Pt wire as the reference and counter electrode, respectively. The voltage window of cyclic voltammograms (CVs) was 0–0.8 V with different scan rates ranging from 2 to 100 mV s⁻¹. Galvanostatic charge–discharge testing was performed between 0 and 0.8 V at different current densities from 0.5 to 20 A g⁻¹. The electrochemical impedance spectroscopy (EIS) measure-
ments were conducted by applying an AC voltage in the frequency range from 10 mHz to 100 kHz with 5 mV amplitude. The specific capacitance (C) of the electrode can be calculated from CV and galvanostatic charge–discharge curves according to the following equations

$$C = \frac{I dV}{\nu mV}$$ \hspace{1cm} (3)

$$C = \frac{I \times \Delta t}{mV}$$ \hspace{1cm} (4)

where I (A) is the current; V (V) is the potential; \(\nu \) (mV s\(^{-1}\)) is the potential scan rate; \(m \) (g) is the mass of the electroactive materials in the electrodes; and \(\Delta t \) (s) is the discharge time.

3. RESULTS AND DISCUSSION

FESEM images of bare electrospun carbon nanofibers are shown in Figure 2a. The average diameter of CNF is about 300 nm with a smooth surface and uniform diameter distribution. Figure 2b shows the morphology of Ni–Co LDH-doped PAN nanofibers with embedded Ni–Co LDH nanofibers on the surface. After heat treatment for preoxidation and carbonization, NiCo\(_2\)O\(_4\)-doped carbon nanofibers (NCCNF) were obtained as shown in Figure 2c, which shows morphology similar to Ni–Co LDH-doped PAN nanofibers except with a slight decrease in fiber diameter due to the pyrogenic decomposition and cyclization reaction of PAN chains. The morphology of NCCNF thus formed is further investigated by TEM (Figure 2d). Uniformly distributed NiCo\(_2\)O\(_4\) nanoparticles with a size range from 10 to 20 nm can be clearly observed inside carbon nanofibers, indicating a homogeneous internal doping of NiCo\(_2\)O\(_4\) nanoparticles. The energy-dispersive spectrum (EDS) for the selected area of NCCNF is presented in Figure 2e with obvious energy peaks of Ni and Co elements, which gives further evidence for the successful hybridization of NiCo\(_2\)O\(_4\) particles inside CNF. The existence of NiCo\(_2\)O\(_4\) nanoparticles in CNF can not only increase the electrical conductivity of bare carbon nanofiber membranes but also act as energy storage units to enhance their electrochemical performance. Additionally, the rough surface induced by NiCo\(_2\)O\(_4\) nanoparticle incorporation produces more active sites for the subsequent growth of MnO\(_2\) nanosheets and nanorods.

Via the redox deposition method, MnO\(_2\) nanosheets are uniformly anchored on the surface of NiCo\(_2\)O\(_4\)-doped CNF to form a core–sheath structure of the NCCNF@MnO\(_2\) nanosheet. As shown in Figure 3a, MnO\(_2\) nanosheets are thin and sparsely distributed on the surface of NCCNF, due to the limited manganese sources. With the increase of weight ratio of NCCNF membrane to KMnO\(_4\), NCCNFs are gradually covered with thickly and densely distributed MnO\(_2\) nanosheets, resulting in ever-increasing fiber diameters (Figure 3b–d). When the weight ratio of the NCCNF membrane to KMnO\(_4\) is 1:5, a 2-fold increase in the fiber diameter to about 600 nm (Figure 3e) can be observed, compared with the diameter of NCCNF (Figure 2c). Figure 3f shows the digital photo of the highly flexible NCCNF@MnO\(_2\) nanosheet hybrid membrane, which can be directly used as electrode material without the cumbersome process of preparing a composite of conductive additives and polymer binders as reported previously.\(^{59}\)

Meanwhile, the uniform growth of 2D MnO\(_2\) nanosheets on intersecting 1D carbon nanofibers with NiCo\(_2\)O\(_4\) doping can effectively prevent the aggregation of MnO\(_2\) nanoparticles (Figure S1, Supporting Information), as well as provide an open 3D structure to enhance electron transfer during the charge–discharge processes.

In order to reveal the simplicity and universality of this method, a “mace-like” hybrid nanostructure was obtained by replacing KMnO\(_4\) with Mn(SO\(_4\))\(_2\) and (NH\(_4\))\(_2\)S\(_2\)O\(_8\) as precursors for the redox reactions. MnO\(_2\) nanorods with diameter of 20–50 nm were perpendicularly and densely grown on the surface of NCCNF as shown in Figure 4a and 4b. This hierarchical core–sheath nanostructure can also effectively prevent the aggregation of MnO\(_2\) nanoparticles (Figure S2, Supporting Information), which can largely improve the specific surface area of MnO\(_2\) as well as increase the penetration of electrolyte during the electrochemical processes. The crystal structures of MnO\(_2\) nanosheets and nanorods were verified by using XRD, as shown in Figure 5. For the bare CNF membrane, a very weak diffraction peak at 2θ = 25.1° can be hardly observed (detailed information can be seen in Figure S3, Supporting Information), indicating its poor crystallinity. Four distinct diffraction peaks located at 2θ = 19.3°, 37.2°, 43.9°, and 63.2° in the XRD pattern of the NCCNF membrane can be indexed to (111), (331), (400), and (440) reflections of cubic NiCo\(_2\)O\(_4\) (JCPDS No. 20-0781), indicating the successful hybridization of NiCo\(_2\)O\(_4\) particles into carbon nanofibers.\(^{40}\) The XRD pattern of the NCCNF@MnO\(_2\) NS membrane shows three diffraction peaks at 2θ = 12.7°, 26.3°, and 37.2°, which can be ascribed to the characteristic (001), (002), and (111) peaks of birnessite-type MnO\(_2\) (JCPDS No. 80-1098).\(^{41}\) Birnessite-type MnO\(_2\) (also denoted as δ-MnO\(_2\)) has a two-dimensional lamellar structure with an interlayer distance of 0.73 nm, which is beneficial to the storage of electrolyte between the layer-by-layer structures, thus contributing to the
The compositions and chemical states of NCCNF@MnO2 NS and NCCNF@MnO2 NR hybrid membranes were analyzed by XPS spectra as shown in Figure 6. Mn, C, and O can be clearly identified for both NCCNF@MnO2 NS and NCCNF@MnO2 NR hybrid membranes from the survey spectra in Figure 6a. Meanwhile, the binding energies of Mn 2p3/2 and Mn 2p1/2 are, respectively, centered at 640.9 and 652.7 eV in Mn 2p spectra with a spin energy difference of ~11.8 eV (Figure 6b), which matches well with a previous report, thus not only providing direct evidence for the presence of the MnO2 phase but also indicating the same oxidation state of manganese in both NCCNF@MnO2 NS and NCCNF@MnO2 NR hybrid membranes. Furthermore, TGA curves (Figure S4, Supporting Information) were collected to demonstrate the respective weight (Table S1, Supporting Information) of NiCo2O4 nanoparticles and MnO2 NS or NR for the subsequent electrochemical calculations.

The electrochemical performances were evaluated in a three-electrode system for supercapacitors. Cyclic voltammetry (CV) curves in Figure 7a indicate that the NCCNF@MnO2 NS-3 hybrid membrane possesses a significantly higher specific capacitance than the bare CNF, NCCNF, and CNF@MnO2 NS-1:1 membranes, which can be attributed to the synergistic interactions between the highly conductive NCCNF template and uniformly distributed MnO2 nanosheets. First, hybridization of NiCo2O4 nanoparticles into CNF can achieve a synergistic enhancement in their capacitance due to high conductivity of NCCNF and pseudocapacitive characteristics of NiCo2O4 nanoparticles. Second, electrochemical properties can be significantly improved due to the pseudocapacitive characteristics of MnO2 nanosheets and their uniform growth on the surface of nanofibers. CV curves of NCCNF@MnO2 NS membrane electrodes with different weight ratios of the NCCNF membrane to KMnO4 were collected at a scan rate of 100 mV s⁻¹ (Figure 7b), which exhibit quasi-rectangles and mirror-image symmetry, thus demonstrating their ideal capacitive behavior. The NCCNF@MnO2 NS-3 membrane electrode exhibits the optimal specific capacitance of 501 F g⁻¹ (based on the active materials) at 100 mV s⁻¹ among these five samples. Moreover, the excessive consumption of the carbon backbone (for the cases of NCCNF@MnO2 NS-4 and NCCNF@MnO2 NS-S) with luxuriant growth of MnO2 nanosheets dramatically hinders electrolyte penetration and electron transport during electrochemical processes, thus resulting in negative effects on the final electrochemical performance. Due to the excellent conductivity and optimal MnO2 content in the NCCNF@MnO2 NS-3 hybrid membrane, rectangular shapes of the CV curves at scan rates from 2 to 100 mV s⁻¹ are retained in Figure 7c. The high specific capacitance of 309 F g⁻¹ based on the whole electrode, that is, 918 F g⁻¹ based on the active materials, is achieved for the NCCNF@MnO2 NS-3 hybrid membrane at a scan rate of 2 mV s⁻¹, much higher than the previously reported value (530 F g⁻¹ at a scan rate of 2 mV s⁻¹) for the coaxial carbon nanofiber/MnO2 nanocomposite approaching the theoretical value of MnO2. Furthermore, the linear and symmetrical galvanostatic charge–discharge curves (Figure 7d) of the NCCNF@MnO2 NS-3 membrane electrode manifest its rapid voltage–current response and excellent electrochemical reversibility. Even high rate retention of 248 F g⁻¹ is achieved at 10 A g⁻¹ for the NCCNF@MnO2 NS-3 hybrid membrane, indicating high rate capability as electrode materials. As shown in Figure 7e, CNF and NCCNF membranes exhibit extremely excellent rate stabilities but low specific capacitances. With increasing the
coating of MnO₂ sheath, the rate stability shows a slight decrease due to excess consumption of the carbon backbone which is the key contributor for the high rate stability of the as-obtained hybrid electrode materials (Figure S5, Supporting Information). Therefore, the NCCNF@MnO₂ NS-3 hybrid membrane shows the highest specific capacitance as well as acceptable rate stability for supercapacitor applications. As shown in Figure 7f, cycling life tests for bare CNF, NCCNF, CNF@MnO₂ NS-1:1, and NCCNF@MnO₂ NS-3 membranes were carried out at 10 A g⁻¹ for over 2000 cycles. The NCCNF@MnO₂ NS-3 electrode exhibits a high retention of 83.3%, which is also evident from the stable charge–discharge curves of the last 20 cycles (Figure S6a, Supporting Information) with almost 99% Coulombic efficiency.

Quasi-rectangular and mirror-image symmetrical CV curves can also be observed for the "mace-like" nanostructured NCCNF@MnO₂ NR hybrid membrane, as shown in Figure 8a and 8b. The NCCNF@MnO₂ NR hybrid membrane exhibits higher specific capacitance of 308 F g⁻¹ (based on the whole electrode) at a scan rate of 2 mV s⁻¹, i.e., 827 F g⁻¹ (based on the active materials), over bare CNF, NCCNF, or CNF@MnO₂ NR membranes. Linear and symmetrical galvanostatic charge–discharge curves of the NCCNF@MnO₂ NR electrode at different current densities are shown in Figure 8c, exhibiting a high specific capacitance of 477 F g⁻¹.
at a current density of 0.5 A g⁻¹. The scan rate dependence of the specific capacitance (Figure 8d) reveals an excellent rate stability with high specific capacitance of 146 F g⁻¹ (based on whole materials) at a scan rate of 100 mV s⁻¹ for the NCCNF@MnO₂ NR hybrid membrane. The cycling stability of the NCCNF@MnO₂ NR electrode is shown in Figure 8e with a high retention of 87.6% even after 2000 cycles, which is comparable with the stable performance of bare CNF and NCCNF membranes. Furthermore, the charge–discharge curves of the last 20 cycles indicate a high Coulombic efficiency for the NCCNF@MnO₂ NR hybrid membrane as shown in Figure S6b (Supporting Information). Thus, it proves an easy and versatile approach via the combination of electrospinning and redox deposition processes to prepare three-dimensional and flexible carbon nanofiber@MnO₂ hybrid electrode materials with different morphologies and crystal forms of MnO₂ nanoparticles.

As mentioned above, the specific capacitance of the NCCNF@MnO₂ NS-3 hybrid membrane is 918 F g⁻¹ (based on the active materials) at a scan rate of 2 mV s⁻¹, which is higher than that (827 F g⁻¹) of the NCCNF@MnO₂ NR hybrid membrane. This can be attributed to the different crystal forms of MnO₂ in these two hybrid membranes. As reported previously, the electrochemical performance of MnO₂ is closely related to its crystal forms, which decreases by the following order: α ≈ δ > γ > λ > β. The layer-by-layer structure of δ-MnO₂ is beneficial to the penetration of electrolyte due to its high content of crystal water. However, γ-type MnO₂ is relatively regular with a low content of crystal water, which severely limits ion exchange during the charge–discharge processes. Therefore, the ultimate electrochemical performance of the NCCNF@MnO₂ NS hybrid membrane is better than that of the NCCNF@MnO₂ NS hybrid membrane.

EIS was measured to investigate the electrochemical impedance of bare CNF, NCCNF, NCCNF@MnO₂ NS-3, and NCCNF@MnO₂ NR membranes in the frequency range of 100 kHz to 0.01 Hz, as shown in Figure 8f. All plots display a part of the semicircle at a high-frequency region and a straight line in the low-frequency region, which, respectively, correspond to the electron-transfer processes and diffusion processes. The smaller semicircle in the high-frequency region and steeper slope in the low-frequency region for the NCCNF membrane over the CNF membrane (Figure S7, Supporting Information) indicate an enhanced conductivity due to the hybridization of NiCo₂O₄ nanoparticles into carbon nanofibers. Furthermore, low electrode–electrolyte interfacial resistances for both NCCNF@MnO₂ NS and NCCNF@MnO₂ NR hybrid membranes also indicate remarkably excellent electrolyte penetration of these two electrode materials.

The excellent performance of MnO₂ NS and NR on CNF membranes can be attributed to the following aspects: (1) The uniform and immense growth of MnO₂ nanosheets and nanorods on the surface of NiCo₂O₄-doped carbon nanofibers effectively prevents the aggregation of MnO₂ nanoparticles, which obviously increases its specific surface area as well as provides more active sites for ionic adsorption. (2) Carbon nanofibers, as typical electrical double-layer capacitor materials, possess high electrical conductivity, which contribute to faster electron transportation during the electrochemical processes. (3) Uniformly distributed NiCo₂O₄ nanoparticles in CNF can not only increase the conductivity of CNF membranes but also act as numerous energy-storage units to enhance the pseudocapacitive performance. (4) The nonwoven electrospun membrane provides an enormously open three-dimensional network, which facilitates the penetration of electrolytes and transport of electrons as illustrated in Figure 9. Therefore, this new kind of flexible hybrid membrane with hierarchical nanostructures obtained by direct redox deposition of pseudocapacitive MnO₂ nanoparticles on highly conductive electrospun carbon nanofibers offers great promise as binder-free electrodes for high-performance energy storage devices.

4. CONCLUSIONS

In summary, NiCo₂O₄-doped carbon nanofiber@MnO₂ nanosheet and nanorod hybrid membranes with different crystal forms of MnO₂ nanostructures were facilely synthesized by combining electrospinning, solution codeposition, and redox deposition methods. Birnessite-type MnO₂ nanosheets and γ-phase MnO₂ nanorods are uniformly and densely anchored on the surface of NiCo₂O₄-doped carbon nanofibers to form an open three-dimensional network, which can efficiently increase the specific surface areas for ionic adsorption and offers intersecting pathways for electron transport during the charge–discharge processes. Thus, remarkably enhanced specific
capacitances of 918 and 827 F g\(^{-1}\) (based on the active materials) at ascan rate of 2 mV s\(^{-1}\) are, respectively, achieved for NCCNF@MnO\(_2\) NS and NCCNF@MnO\(_2\) NR hybrid membranes, with excellent rate and cycling stabilities. Our results imply that NiCoO\(_4\)-doped CNF@MnO\(_2\) nanosheet and nanorod hybrid membranes are promising electroactive materials for high-performance supercapacitors.

ASSOCIATED CONTENT

Supporting Information

Figure S1 shows FESEM images of bare MnO\(_2\) nanosheets without NiCoO\(_4\)-doped carbon nanofibers as template at different magnifications. Figure S2 shows FESEM images of bare MnO\(_2\) nanorods without NiCoO\(_4\)-doped carbon nanofibers as template at different magnifications. Figure S3 presents a detailed XRD pattern of the bare electrospun CNF membrane. Figure S4 displays TGA profiles of bare CNF, NCCNF, NCCNF@MnO\(_2\) NS-1, NCCNF@MnO\(_2\) NS-2, NCCNF@MnO\(_2\) NS-3, NCCNF@MnO\(_2\) NS-4, NCCNF@MnO\(_2\) NS-5, and NCCNF@MnO\(_2\) NR membranes obtained under air flow at a temperature ramp of 10 °C min\(^{-1}\). Figure S5 shows rate stability of NCCNF@MnO\(_2\) nanosheet hybrid membranes at different scan rates. Figure S6 presents the charge−discharge curves of the last 20 cycles for (a) NCCNF@MnO\(_2\) NS-3 hybrid membrane and (b) NCCNF@MnO\(_2\) NR hybrid membrane. Figure S7 shows the magnified Nyquist plots of bare CNF and NCCNF membranes. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.5b02739.

AUTHOR INFORMATION

Corresponding Author
*E-mail: txdiu@fudan.edu.cn. Tel.: +86-21-55664197. Fax: +86-21-65640293.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors are grateful for the financial support from the National Natural Science Foundation of China (51122011, 151373037, 51433001).

(31) Zhang, P.; Shao, C.; Zhang, Z.; Zhang, M.; Mu, J.; Guo, Z.; Liu, Y. In Situ Assembly of Well-Dispersed Ag Nanoparticles (AgNPs) on Electrospun Carbon Nanofibers (CNFs) for Catalytic Reduction of 4-Nitrophenol. Nanoscale 2011, 3, 3357–3363.

